• Title/Summary/Keyword: Stress Gradient

Search Result 516, Processing Time 0.028 seconds

Development of the Microfluidic Device to Regulate Shear Stress Gradients

  • Kim, Tae Hyeon;Lee, Jong Min;Ahrberg, Christian D.;Chung, Bong Geun
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.294-303
    • /
    • 2018
  • Shear stress occurs in flowing liquids, especially at the interface of a flowing liquid and a stationary solid phase. Thus, it occurs inside the artery system of the human body, where it is responsible for a number of biological functions. The shear stress level generally remains less than $70dyne/cm^2$ in the whole circulatory system, but in the stenotic arteries, which are constricted by 95%, a shear stress greater than $1,000dyne/cm^2$ can be reached. Methods of researching the effects of shear stress on cells are of large interest to understand these processes. Here, we show the development of a microfluidic device for generating shear stress gradients. The performance of the shear stress gradient generator was theoretically simulated prior to experiments. Through simple manipulations of the liquid flow, the shape and magnitude of the shear stress gradients can be manipulated. Our microfluidic device consisted of five portions divided by arrays of micropillars. The generated shear stress gradient has five distinct levels at 8.38, 6.55, 4.42, 2.97, and $2.24dyne/cm^2$. Thereafter, an application of the microfluidic device was demonstrated testing the effect of shear stress on human umbilical vein endothelial cells.

A Comparative Study of the Hemodynamic Hypotheses for the Generation of Atherosclerosis (동맥경화증의 발생에 관한 혈류역학적 가설들에 대한 비교연구)

  • Suh, Sang-Ho;Cho, Min-Tae;Roh, Hyung-Woon;Kwon, Hyuck-Moon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1915-1918
    • /
    • 2003
  • Atherosclerosis, which is a degenerate disease, is believed to occur in the vascular system due to deposition of cholesterol and low density lipoprotein(LDL) or thrombosis on the blood vessel. Atherosclerosis narrows arterial lumen, which is known as stenosis phenomenon of blood vessel. Pathogenesis of atherosclerosis is thought to occur mainly by aging. Restenosis phenomenon is observed in the same site of insertion of a stent and balloon angioplasty after treatment of interventional theraphy. Several hypothetical theories related to the generation of atherosclerosis have been reported: high shear stress theory, low shear stress theory, high shear stress gradient theory, flow separation and turbulence theory and high pressure theory. However, no one theory clearly explains the causes of atherosclerosis. In the present study the generation of atherosclerosis in the left coronary artery is investigated. The hypotheses are verified by using the computer simulation.

  • PDF

Gradient of the Residual Stress distribution in Optical fiber by the Heat Treatment Temperature (열처리 온도에 따른 광섬유 잔류응력 분포의 변화)

  • Sin, In-Hui;Ju, Seong-Min;Han, Won-Taek;Kim, Deok-Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.208-209
    • /
    • 2005
  • The gradient of the residual stress distribution by the heat treatment temperature in the commercial single mode fiber was investigated. The heat treatment of the optical fiber was carried out at 700${\circ}$C, 1100${\circ}$C, and 1200${\circ}$C for 1 hour by using the halogen lamp and the residual stress measurement of the optical fiber was accomplished by using the inverse linear polarizing method. Mechanical residual stress was relaxed and thermal residual stress was invested by the heat treatment.

  • PDF

Structural analysis of joint part by adhesive length of a composite pressure vessel with separated dome (돔 분리형 연소관의 접착 길이에 따른 체결부의 구조해석)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Hwang, Tea-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.933-937
    • /
    • 2011
  • In order to determine optimal design length of adhesive joint of a composite pressure vessel with separated dome, stress analysis of joint part according to changes of adhesive length was done. Adhesive length has a range of 50mm to 300mm as design variables. The ratio of adhesive length with any stress gradient to initial non-stressed adhesive length was called "stress gradient length ratio" and selected as objective function. The stress gradient length ratio of joint part with adhesive length of more than 200mm was increased very slowly with increase of adhesive length. It means that adhesive length of about 200mm could be the optimal value to ensure the structural safety of joint part against internal pressure of 2,500 psi.

  • PDF

Effects of Secondary Flow on the Turbulence Structure of a Flat Plate Wake (2차유동이 평판후류의 난류구조에 미치는 영향)

  • Kim, Hyeong Soo;Lee, Joon Sik;Kang, Shin Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1073-1084
    • /
    • 1999
  • The effects of secondary flow on the structure of a turbulent wake generated by a flat plate was investigated experimentally. The secondary flow was induced In a $90^{\circ}$ curved duct in which the flat plate wake generator was installed. The wake generator was installed in such a way that the wake velocity gradient exists in the span wise direction of the curved duct. Measurements were made in the plane containing the mean radius of curvature where pressure gradient and curvature effects were small compared with the secondary flow effect. All six components of the Reynolds stresses were measured in the curved duct. Turbulence intensities in the curved wake are higher than those in the straight wake due to an increase of the turbulent kinetic energy production by the secondary flow. In the inner wake region, shear stress and strain in the plane containing the velocity gradient of the wake show opposite signs with respect to each other, so that eddy viscosity Is negative in this region. This indicates that gradient-diffusion type turbulence models are not appropriate to simulate this type of flow.

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.

Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter

  • Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Bernard, Fabrice;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • A size-dependent novel hyperbolic shear deformation theory of simply supported functionally graded beams is presented in the frame work of the non-local strain gradient theory, in which the stress accounts for only the nonlocal strain gradients stress field. The thickness stretching effect (${\varepsilon}_z{\neq}0$) is also considered here. Elastic coefficients and length scale parameter are assumed to vary in the thickness direction of functionally graded beams according to power-law form. The governing equations are derived using the Hamilton principle. The closed-form solutions for exact critical buckling loads of nonlocal strain gradient functionally graded beams are obtained using Navier's method. The derived results are compared with those of strain gradient theory.

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique

  • Ghannadpour, S. Amir M.;Khajeh, Selma
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.393-406
    • /
    • 2022
  • In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.

Stress Analysis of Steam Generator Row-1 Tubes (증기발생기 제1열 전열관의 응력 해석)

  • Kim, Woo-Gon;Ryu, Woo-Seog;Lee, Ho-Jin;Kim, Sung-Chung
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.25-30
    • /
    • 2000
  • Residual stresses induced in U-bending and tube-to-tubesheet joining processes of PWR's steam generator row-1 tube were measured by X-ray method and Hole-Drilling Method(HDM). The stresses resulting from the Internal pressure and the temperature gradient in the steam generator were also estimated theoretically. In U-bent lesions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319 MPa in axial direction at ${\psi}=0^{\circ}$ in position. Maximum tensile residual stress of 170MPa was found to be at the flank side at Position of${\psi}=90^{\circ}$, i.e., at apex region. In tube-to-tubesheet fouling methods, the residual stresses induced by the explosive joint method were found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the. transition region, and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction. Hoop stress due to an internal pressure between primary and secondary side was analyzed to be 76 MPa and thermal stress was 45 MPa.

  • PDF

Measurements of the Mechanical Properties of Electroplated Gold Microstructure (전해 도금된 마이크로 금 구조물의 기계적 특성 측정)

  • Baek, Chang-Wong;Kim, Yong-Kweon;Ahn, Yoo-Min
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.86-95
    • /
    • 2001
  • Mechanical properties of electroplated gold microstructures were determined from the micromachined beam structures. Cantilever and bridge beam structures of different length were fabricated by electroplating-surface micromachining technique, which is specially designed to realize an anchor structure close to an ideal fixed-boundary condition. Fabricated beams were electrostatically excited and their resonance frequencies were measured by optical system composed of laser displacement meter with dynamic signal analyzer. Young's modulus and mean residual stress were calculated from the measured frequencies of microbeams. In addtion, stress gradient was measured using deformation of released cantilever beam structure.

  • PDF