• Title/Summary/Keyword: Stress Fields

Search Result 850, Processing Time 0.026 seconds

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

Isogeometric Topological Shape Optimization of Structures using Heaviside Enrichment (헤비사이드 강화를 이용한 구조물의 아이소-지오메트릭 위상 최적설계)

  • Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2013
  • An isogeometric topological shape optimization method is developed using the level sets and Heaviside enrichments. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in the level set functions, which facilitates to handle complicated topological shape changes. The Heaviside enrichment improves the isogeometric analysis by adding some enrichment functions to model the internal boundaries. The proposed topological shape optimization method has several benefits: exact geometric models can be obtained using the isogeometric approach and the limitation of tensor-product patches can be overcome using the Heaviside enrichments to represent the internal voids. Even in a single patch, discontinuous displacement fields as well as smooth stress field can be obtained. Since the level sets offer the implicit moving boundary inside the domain, it is easy to represent the topological shape variations in the isogeometric analysis using Heaviside enrichments.

Fabrication of High-Aspect-Ratio Microscale Polymer Hairs Having Surface Wrinkles (고 세장비 표면주름을 가진 마이크로 폴리머 헤어 제작)

  • Park, Sang-Hu;Kim, Seong-Jin;Park, Hee-Jin;Lee, Joo-Chul;Shin, Bo-Sung
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • We proposed a new process to fabricate a high-aspect-ratio microhair having surface wrinkles using the contact-and-tension of a microstamp. Through this work, we observed that regular surface wrinkles were generated on the hair with a diameter of around $20{\mu}m$ due to the uni-directional compressive stress during the photocuring process by ultraviolet light. To do this, we conducted an experimental system setup for contact-and-tension process. From the preliminary test results, we believed that the proposed method can be applied to make a long polymer hair having surface wrinkles for special applications to biomimetics, and some research fields related on surface area such as heat transfer and catalyst enhancement.

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Fabrication and Characterization of InGaN/GaN LED structures grown on selectively wet-etched porous GaN template layer

  • Beck, Seol;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.124-124
    • /
    • 2010
  • Much interest has been focused on InGaN-based materials and their quantum structures due to their optoelectronics applications such as light emitting diode (LED) and photovoltaic devices, because of its high thermal conductivity, high optical efficiency, and direct wide band gap, in spite of their high density of threading dislocations. Build-in internal field-induced quantum-confined Stark effect in InGaN/GaN quantum well LED structures results in a spatial separation of electrons and holes, which leads to a reduction of radiative recombination rate. Therefore, many growth techniques have been developed by utilizing lateral over-growth mode or by inserting additional layers such as patterned layer and superlattices for reducing threading dislocations and internal fields. In this work, we investigated various characteristics of InGaN multiple quantum wells (MQWs) LED structures grown on selectively wet-etched porous (SWEP) GaN template layer and compared with those grown on non-porous GaN template layer over c-plane sapphire substrates. From the surface morphology measured by atomic force microscope, high resolution X-ray diffraction analysis, low temperature photoluminescence (PL) and PL excitation measurements, good structural and optical properties were observed on both LED structures. However, InGaN MQWs LED structures grown on SWEP GaN template layer show relatively low In composition, thin well width, and blue shift of PL spectra on MQW emission. These results were explained by rough surface of template layer, reduction of residual compressive stress, and less piezoelectric field on MQWs by utilizing SWEP GaN template layer. Better electrical properties were also observed for InGaN MQWs on SWEP GaN template layer, specially at reverse operating condition for I-V measurements.

  • PDF

The Analytic and Numerical Solutions of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer Models to the Strong Offshore Winds.

  • Lee, Hyong-Sun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.75-88
    • /
    • 1996
  • The analytic and numerical solution of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer models are derived. The large coastal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using two ocean models are investigated. The models are forced by wind stress fields similar in structure to the intense mountain-pass jets(${\sim}$20 dyne/$cm^{2}$) that appear in the Gulfs of Tehuantepec and Papagayo in the Central America for periods of 3${\sim}$7 days. Analytic and numerical solutions compare favorably with observations, the large sea-level drop (${\sim}$30 cm) at the coast and the fast westward propagation speeds (${\sim}$13 km/day) of the gyres. The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal geometry, and the existence of a second active layer in the 2$\frac{1}{2}$-layer model. Horizontal mixing enhances the sea-level drop because the coastal boundary layer is actually narrower with mixing. The forcing ${\tau}$/h is enhanced near the coast where h is thin. Especially, in analytic solutions to the 2$\frac{1}{2}$-layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses factors the strengthened forcing ${\tau}$/h has the largest effect on the magnitude of the drop, and when all of them are included the resulting maximum drop is -30.0 cm, close to observed values. To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1$\frac{1}{2}$-layer model show that the speed is increased both by ${\beta}$-induced self-advection and by larger h at the center ofthe gyres. Solutions to the 2$\frac{1}{2}$-layer model indicate that the lower-layer flow field advects the gyre westward and southward, significantly increasing their propagation speed. The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

  • PDF

A Study on the Weight Reduction of X,Y stage of Semiconductor Inspection Equipment using Sensitivity Analysis (민감도 분석을 이용한 반도체 검사 장비의 X, Y 스테이지 구조의 경량화 연구)

  • Koh, Man Soo;Kwon, Soon Ki;Kim, Cham Nae
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.125-130
    • /
    • 2019
  • Sensitivity analysis is used to determine the effect of a change in a design parameter on the total system, and the calculated sensitivity is an important indicator of the improvement of a structure. In this study, we investigated the method of deriving and analyzing the sensitivity of design parameters by using finite element analysis and the method of improving a structure by using sensitivity analysis results. Design parameters for weight reduction design were selected using actual semiconductor inspection equipment that requires structural improvement, and the sensitivity to design parameters was calculated by using and finite difference method. We propose an improvement method that can reduce the weight while maintaining the transient response required by the equipment. By using the results of the sensitivity analysis through finite element analysis and finite difference method, we can create a structurally improved design that satisfies the desired stress or displacement by improving the design of the structure. Therefore, sensitivity analysis is applicable to various fields as well as semiconductor inspection equipment.

A Numerical Analysis on Effect of Baffles in a Stirred Vessel (교반탱크에서 베플 형상의 영향에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The flow characteristics in a stirred tank are very useful in a wide variety of industrial applications. Generally, the flow pattern, power consumption and mixing time in stirred vessels depend not only on the design of the impeller, but also on the tanks' geometry and internal structure. In this study, the analysis of an unstable and unsteady complicated flow characteristics generated by the interaction between the baffle shape and impeller were performed using the ANSYS FLUENT LES Turbulence Model. The study compared the predictions of CFD with the interaction between two types of rotating impellers (axial and radial flows) and the shapes of three baffles. The results of the comparison verified that the design model showed a relatively efficient trend in the mixing flow fields and characteristics around the impeller and baffles during agitation.

Analysis of Hairpiece-related Patent Trends (가발 관련기술에 대한 특허동향 연구)

  • Park, Jang-Soon;Kim, Young-Joo;Lim, Sun-Nye
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.611-617
    • /
    • 2018
  • This study divided hairpiece-related technologies into three categories: Materials, Structure, Hair Extensions. Then, it investigated the current patent application trends in the above technologies and attempted to determine what aspects should be focused on in terms of the growth potential of hairpiece-related technologies and future technologies. A hairpiece is used to cover a specific balding area resulting from innate factors such as heredity or acquired traits including disease or accident. It is also used to make short hair look longer. Recently, as the rates of hair loss caused by stress increase, there has been a rising demand for hairpieces that can quickly and conveniently cover a balding region as well as satisfy people's aesthetic needs through diverse hairstyling. Even though patents have been applied evenly across hairpiece technology fields, patent activity has declined since 2010 was confirmed. Therefore, this study targets the facilitation and expansion of the hairpiece technology market by suggesting desirable R&D directions for future hairpiece-related technologies after analyzing current hairpiece patent trends.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.