• 제목/요약/키워드: Stress Error

검색결과 550건 처리시간 0.023초

응력파 전파 수치모의를 위한 유한요소법의 분산오차 저감에 관한 연구 (Dispersion-corrected Finite Element Method for the Stress Wave Propagation)

  • 황인호;최돈희;홍상현;이종세
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.39-44
    • /
    • 2008
  • Stress wave propagation plays an important role in many engineering problems for reducing industrial noise and vibrations. In this paper, the dispersion-corrected finite element model is proposed for reducing the dispersion error in simulation of stress wave propagation. At eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based finite element model are analyzed and some dispersion control scheme are proposed. The validity of the dispersion correction techniques is demonstrated by comparing the numerical solutions obtained using the present techniques.

  • PDF

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

래티스 돔 구조물의 탄소성 거동 특성에 관한 연구 (The Characteristics of Elasto-Plastic Behaviour for the Latticed Dome Structures)

  • 박철호;한상을;양재근
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.53-62
    • /
    • 2004
  • A single layer latticed dome is one of the most efficient structures because of its low specivic gravity. For easily analyzing of a single layer latticed dome, joint system is assumed to be pin or rigid joint. However, its joint uses ball whose system has intermediate properties of pin and rigid joint. Therefore this study has a grasp of bending rigidity, stress and mechanical properties through experimental and analyzing method of the bolt inserted ball joint. To analyze the stress of bolt and sleeve, this study uses through 3D elastic contact and cubic element, and then the ball and the bolt are perfectly connected for easily analyzing Compared experimental results to F.E.M, each specimen has an error of less than 12 percent. In the results of stress distribution through F.E.M, stress occurs from bottom of bolt to top of sleeve, and most of tension appears on the bolt, also compression occurs from upper parts of the bolt to the sleeve. The assumption of bending stiffness in ball joint is well known that bolt resists only tension and upper sleeve resiss compression. The results of experiment and analysis have $7{\sim}56%$ error, assuring that upper part of bolt occurs of partial compression. In the result of modified assumption have $4{\sim}20%$ error.

  • PDF

열응력 제한조건이 고려된 위상최적화 기법을 이용한 광학 미러 플렉셔 마운트 최적설계 (Optimal Design of the Flexure Mount for Optical Mirror Using Topology Optimization Considering Thermal Stress Constraint)

  • 이경호;이중석
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.561-571
    • /
    • 2022
  • An optical mirror assembly is an opto-mechanically coupled system as the optical and mechanical behaviors interact. In the assembly, a flexure mount attached to an optical mirror should be flexible in the radial direction, but rigid for the remaining degrees of freedom for supporting the mirror rigidly and suppressing the wavefront error of the optical mirror. This work presents an optimal design of the flexure mount using topology optimization with thermal stress constraint. By simplifying the optical mirror assembly into finite shell elements, topology optimization model was built for efficient design and good machinability. The stress at the boundary between the optical mirror and the mount together with the first natural frequency were applied as constraints for the optimization problem, while the objective function was set to minimize the strain energy. As a result, we obtained the optimal design of the flexure mount yielding the improved wavefront error, proper rigidity, and machinability.

Prediction of Error due to Eccentricity of Hole in Hole-Drilling Method Using Neural Network

  • Kim, Cheol;Yang, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1359-1366
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, we obtained the magnitude of the error due to eccentricity of a hole through the finite element analysis. To predict the magnitude of the error due to eccentricity of a hole in the biaxial residual stress field, it could be learned through the back propagation neural network. The prediction results of the error using the trained neural network showed good agreement with FE analyzed results.

시간 압박이 인간과오 관련 뇌파 특성에 미치는 영향 (Influence of Time Stress on EEG Characteristics Related with Human Errors)

  • 임현교
    • 한국안전학회지
    • /
    • 제26권3호
    • /
    • pp.83-90
    • /
    • 2011
  • It is well known that urgency resulted from time stress can be a great cause to industrial accidents. Therefore, time stress has been studied in the aspect of macroscopic view, namely industrial safety management, but has not been studied in microscopic view such as psychophysiological approach. Among diverse psychophysiological indices, Electroencephalogram(EEG) would be on of the most objective psychophysiological research technique on human errors though few research has been taken yet. This study aimed to get characteristics of human error while committing a simple arithmetic addition task by utilizing the power spectrum technique of EEG data. Each experiment was composed of 2 tasks under different condition - with and without time stress. As subjects, 5 young undergraduate students in their early twenties participated in this study. The results advocated a well-known fact that time stress downgrades the performance of human workers. However, correct answer rate and response time were not significantly influenced by time stress factor which might be explained by the constructural factor adopted in the present study. As in the previous studies, among various EEG-related measures, relative band power ratios of ${\alpha}$ and ${\beta}$ waves to sum of ${\alpha}$,${\beta}$,${\theta}$ wave powers, namely $P_{{\alpha}/({\alpha}+{\beta}+{\theta})}$ and $P_{{\beta}/({\alpha}+{\beta}+{\theta})}$ seemed to be the most effective measures to grasp variation of brain activities in time-stressed situation so that discussions were expanded about their variations.

Stress intensity factors for 3-D axisymmetric bodies containing cracks by p-version of F.E.M.

  • Woo, Kwang S.;Jung, Woo S.
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.245-256
    • /
    • 1994
  • A new axisymmetric crack model is proposed on the basis of p-version of the finite element method limited to theory of small scale yielding. To this end, axisymmetric stress element is formulated by integrals of Legendre polynomial which has hierarchical nature and orthogonality relationship. The virtual crack extension method has been adopted to calculate the stress intensity factors for 3-D axisymmetric cracked bodies where the potential energy change as a function of position along the crack front is calculated. The sensitivity with respect to the aspect ratio and Poisson locking has been tested to ascertain the robustness of p-version axisymmetric element. Also, the limit value that is an exact solution obtained by FEM when degree of freedom is infinite can be estimated using the extrapolation equation based on error prediction in energy norm. Numerical examples of thick-walled cylinder, axisymmetric crack in a round bar and internal part-thorough cracked pipes are tested with high precision.

유리 압축 실험에서의 복굴절 분포 예측 (Prediction of Birefringence Distribution in Cylindrical Glass Compression Test)

  • 이주현;나진욱;임성한;오수익
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.509-514
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The error of simulation results between experimental results in the birefringence value at the center of glass specimen is $4.2\%$, and the error in the maximum radius of deformed glass specimen is $1.2\%$. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

링기어의 경계조건이 가공오차를 가지는 유성기어열의 정특성에 미치는 영향 (Influence of Ring Gear Boundary Conditions on the Static Characteristics of Epicyclic Gear Trains with Manufacturing Errors)

  • 천길정
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1949-1957
    • /
    • 2003
  • A hybrid finite element analysis was used to analyze the influence of ring gear rim thickness and spline number on the static properties of a planetary gear system with manufacturing errors. Both of these parameters affected the bearing force and critical stress. The effect of changes in the rim thickness on the load sharing between the gears depended on the type of manufacturing error. Ring flexibility improved the load sharing between planetary gears only in systems with planet tooth thickness or planet tangential errors; for other types of error, ring flexibility worsened the load sharing. To improve load sharing, rim thickness and spline number should be controlled within a specific range. The minimum rim thickness limit should be determined considering not only the critical stress but also the load sharing. The effect of the ring gear boundary condition was more apparent in a system with errors than in a normal system.

Bayes Estimation of Stress-Strength System Reliability under Asymmetric Loss Functions

  • Hong, Yeon-Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.631-639
    • /
    • 2003
  • Bayes estimates of reliability for the stress-strength system are obtained with respect to LINEX loss function. A reference prior distribution of the reliability is derived and Bayes estimates of the reliability are also obtained. These Bayes estimates are compared with corresponding estimates under squared-error loss function.

  • PDF