• Title/Summary/Keyword: Stress Corrosion Cracking (SCC)

Search Result 121, Processing Time 0.028 seconds

Stress Corrosion Cracking Initiation Behavior of Weldable Structural Steel in $H_2S$ Gas Saturated HCl Solution ($H_2S$ 가스포화 염산수용액에 의한 용접구조용강의 응력부식균열 발생거동)

  • 오세욱;김재철;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.88-100
    • /
    • 1990
  • Among the test methods to evaluate stress-corrosion cracking(SCC) on the basis of fracture mechanics, constant displacement(bolt) loading method using modified-WOL specimen is practically convenient. In this test method, compliance formula is generally required to calculate load(consequently $K_{ISCC}$). There are many problems in using the analytic compliance formula to calculate $K_{ISCC}$, so we had proposed the experimental $K_{ISCC}$ evaluation technique in the previous report. This study has employed the slightly altered configuration of modified-WOL specimen made of weldable structural stee(BS360-50D). With these specimens, stress-corrosion tests have been performed in $H_2S$ gas saturated 20% HCl solution. Through the test, the problems as mentioned earlier have been discussed again, and the proposed evaluation technique has been verified. And the stress-corrosion cracks and hydrogen blisters have been investigated in the initiation step with the aids of metallurgical micrographs, SEM fractographs, and EPMA analysis. The inclusions segregated in the mid-thickness region traps hydrogen to produce the hydrogen blistering. The applied or residual stress does not contribute the occurrence of the blister. Hydrogen absorbed into the mid-thickness region is consumed to produce the blistering so that stress-corrosion crack could hardly be detected at that region. The stress-corrosion cracks initiate from the inclusions and propagate in radial pattern. And the initiation site is remote from the crack tip and is inclined from the crack plane, which is assumed to be caused by the triaxial stress and the amount of the absorbed hydrogen.

  • PDF

Effect of oxide film on ECT detectability of surface IGSCC in laboratory-degraded alloy 600 steam generator tubing

  • Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Hong Deok;Hwang, Il Soon;Kim, Ji Hyun;Lee, Min Ho;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1381-1389
    • /
    • 2019
  • Stress corrosion cracking (SCC) widely found in both primary and secondary sides of steam generator (SG) tubing in pressurized water reactors (PWR) has become an important safety issue. Using eddy-current tests (ECTs), non-destructive evaluations are performed for the integrity management of SG tubes against intergranular SCC. To enhance the reliability of ECT, this study investigates the effects of oxide films on ECT's detection capabilities for SCC in laboratory-degraded SG tubing in high temperature and high pressure aqueous environment.

A Study on the Stress Corrosion Cracking Behaviors for Weld Joint of Steel with Various pH Values in Synthetic Sea Water (인공해수의 pH에 따른 강 용접부의 응력 부식균열거동에 관한 연구)

  • 유효선;나의균;정세희
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.78-88
    • /
    • 1995
  • This paper was performed to study the utility of the SP(small punch) test and the AE(acoustic emission) test in the evaluation of SCC(stress corrosion cracking) susceptibility for parent metal and bond line of HT80 steel-weld joint by SAW(submerged arc welding) with the various pH values. The loading rate used was 3*10$^{-4}$ mm/min and the corrosive environment used was synthetic sea water during the SP test and the AE test. According to the test results, the SCC susceptibility of the parent metal was increased in the order of pH6.0, pH8.2 and pH10.0. On the other hand, the bond line showed almost the same high SCC susceptibility in all pH concentrations. Synthetically, from the results of the SCC susceptibility, the macro- and micro-SEM observation, the microfracture behaviors by AE test and the relationship between SCC susceptibility and displacement at incipient failure, .delta.$_{i.f-AE}$, it can be concluded that the SP test and the AE test are the good test methods to evaluate the SCC susceptibility for parent metal and bond line of the weld joint with the change of environmental factors.

  • PDF

Modeling of stress corrosion crack growth and lifetime of pipe grade high density polyethylene by using crack layer theory (Crack Layer 이론을 이용한 배관용 고밀도 폴리에틸렌의 응력부식균열 진전 및 수명 예측 모델)

  • Wee, Jung-Wook;Choi, Byoung-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • In many cases, the field fracture mechanism of the thermoplastic pipe is considered as either brittle or environmental fractures. Thus the estimation of the lifetime by modeling slow crack growth considering such fracture mechanisms is required. In comparison of the some conventional and empirical equations to explain the slow crack growth rate such as the Paris' law, the crack layer theory can be used to simulate the crack and process zone growth behaviors precisely, so the lifetime of thermoplastic pipe can also be accurately estimated. In this study, the modified crack layer theory for the stress corrosion cracking (SCC) of high density polyethylene is introduced with detailed algorithm. The oxidation induction time of the HDPE is also considered for the reduction of specific fracture energy during exposed to chemical environments. Furthermore, the parametric study for an important SCC parameter is conducted to understand the slow crack growth behavior of SCC.

Stress Corrosion Cracking Susceptibility Evaluation by Small Punch Test (소형펀치시험법에 의한 응력부식균열 감수성평가에 관한 연구)

  • 유효선;이송인;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2033-2042
    • /
    • 1993
  • In conventional SCC susceptibility test, there are constant strain test, constant load test, slow strain rate test(SSRT) and K$_{ISCC}$ test. Among them, the SSRT method is much more aggressive in producing SCC than the other tests, so that the test time of it is considerably reduced. But this SSRT method has mostly been worked using the uniaxial tensile specimen untill now. Therefore, the SSRT method using the tensile specimen(Ten-SSRT) has much difficulty in SCC susceptibility evaluation of a localized region like weldment and the advantage material of high order. Recentely, the small punch(SP) test method using miniaturized small specimen is the very effective test method for fracture strength evaluation of a localized region like weldment and fusion reactor wall irradiated in the nuclear power plant. This paper investigated the possibility of SCC susceptibility evaluation by the SP-SSRT method using the miniaturized small specimen. Therefore, we obtained the result that the SP-SSRT had the possibility for the evaluations of SCC susceptibility for shorter time to corrosive environment compare to Ten-SSRT which was conventional method.

A Study on Stress Corrosion of Al-8ti-1B Alloys by Mechanical Alloying (기계적 합금화한 Al-8Ti-1B 합금의 응력부식에 관한 연구)

  • 김기주;강성군;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.215-222
    • /
    • 1994
  • The role dispersoids has been studied in a number of researches as a key point for the high strength application of dispersion strengthened aluminum alloy. The mechanical alloying(MA) process with high mechanical properties of dispersion strengthened MA Al-8Ti-1B alloys were invested in order to evaluate their stress corrosion cracking(SCC) application. SCC properties of the mechanically alloyed Al-8Ti-1B were studied using slow strain rate test(SSRT). In this study Al-8Ti-1B alloy were more susceptible to SCC in solutions of pH=2.01 and 13.2 than pH=6.81 solution. In this study Al-8Ti-1B alloys by MA had more SCC resistance than Al-8Ti alloys or Al 7075-T73 alloys. So Al-8Ti-1B alloys by MA had more resistance in SSRT SCC susceptinility test than any other above alloying metals.

  • PDF

Analysis of SCC Behavior of Alloy 600 Nozzle Penetration According to Residual Stress Induced by Dissimilar Metal Welding (Alloy 600 노즐관통부의 이종금속용접 잔류응력에 따른 응력부식균열 거동 분석)

  • Kim, Sung-Woo;Kim, Hong-Pyo;Kim, Dong-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.34-41
    • /
    • 2010
  • This work is concerned with the analysis of stress corrosion cracking(SCC) behavior of Alloy 600 nozzle penetration mock-up according to a residual stress induced by a dissimilar metal welding(DMW) in a nuclear reactor pressure vessel. The effects of the dimension and materials of the nozzle penetration on the deformation and the residual stress induced by DMW were investigated using a finite element analysis(FEA). The inner diameter(ID) change of the nozzle by DMW and its dependance on the design variables, calculated by FEA, were well consistent with those measured from the mock-up. Accelerated SCC tests were performed for three mock-ups with different wall thicknesses in a highly acidic solution to investigate mainly the effect of the residual stress on the SCC behavior of Alloy 600 nozzle. From a destructive examination of the mock-up after the tests, the SCC behavior of the nozzle was fairly related with the residual stress induced by DMW : axial cracks were found in the ID surface of the nozzle within the J-weld region where the highest tensile hoop stress was predicted by FEA, while circumferential cracks were observed beyond both J-weld root and toe where the highest tensile axial stress was expected.

  • PDF

ROLE OF GRAIN BOUNDARY CARBIDES IN CRACKING BEHAVIOR OF Ni BASE ALLOYS

  • Hwang, Seong Sik;Lim, Yun Soo;Kim, Sung Woo;Kim, Dong Jin;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • The primary water stress corrosion cracking (PWSCC) of Alloy 600 in a PWR has been reported in the control rod drive mechanism (CRDM), pressurizer instrumentation, and the pressurizer heater sleeves. Recently, two cases of boric acid precipitation that indicated leaking of the primary cooling water were reported on the bottom head surface of steam generators (SG) in Korea. The PWSCC resistance of Ni base alloys which have intergranular carbides is higher than those which have intragranular carbides. Conversely, in oxidized acidic solutions like sodium sulfate or sodium tetrathionate solutions, the Ni base alloys with a lot of carbides at the grain boundaries and shows less stress corrosion cracking (SCC) resistance. The role of grain boundary carbides in SCC behavior of Ni base alloys was evaluated and effect of intergranular carbides on the SCC susceptibility were reviewed from the literature.

Study on characteristics of SCC and AE signals for the weld HAZ of HT-60 steel under corrosion control (부식제어하에서 HT-60강 용접부의 SCC 및 AE 신호 특성에 관한 연구)

  • 나의균;고승기
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.241-244
    • /
    • 1999
  • The purpose of this study is to examine the characteristics of stress corrosion cracking(SCC) and acoustic emission(AE) signals for the weld HAZ of HT-60 steel under corrosion control in synthetic seawater. Corrosive environment was controlled by potentiostat, and SCC experiment was conducted using a slow strain rate test method at strain rate of 10$^{-5}$ /sec. In order to verify the miroscopic fracture behaviour of the weldment during SCC phenomena, AE test was done simultaneously. Besides, correlationship between mechanical parameters and AE ones was investigated. In case of the parent, reduction of area(ROA) at -0.5V was samller than any other applied voltage such as -0.8V and -1.1V. In addition, reduction of area for the PWHT specimens at -0.8mV was larger than that of the weldment due to the softening effect according to PWHT. In case of the weldment, a lots of events was produced because of the singularities of the weld HAZ compared with the parent.

  • PDF

Mechanics Evaluations of Stress Corrosion Cracking for Dissimilar Welds in Nuclear Piping System (원자력 배관 이종금속 용접부 웅력부식균열의 역학적 평가)

  • Park, Jun-Su;Na, Bok-Gyun;Kim, In-Yong
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.38-40
    • /
    • 2005
  • Fracture mechanics evaluation of stress corrosion cracking (SCC) in the dissimilar metal weld (DMW) for the nuclear piping system is performed; simulating the transition joint of the ferritic nozzle to austenitic safe-end fabricated with the Inconel Alloy A82/182 buttering and welds. Residual stresses in the DMW are computed by the finite element (FE) analyses Then, to investigate the SCC in the weld root under the combined residual and system operation stresses, the fracture mechanics parameters for a semi-elliptical surface crack are evaluated using the finite element alternating method (FEAM). As a result, it is found that the effect of weld residual stresses on the crack-driving forces is dominant, as high as three times or more than the operation stresses.

  • PDF