• 제목/요약/키워드: Stress Concentration ratio

검색결과 289건 처리시간 0.032초

불연속 금속복합체에서의 탄성거동에 관한 미세구조역학적 해석 (A Micromechanical Analysis on the Elastic Behavior in Discontinuous Metal Matrix Composites)

    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.58-64
    • /
    • 1997
  • A micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites was developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. By the calculation of the present model, stress concentration factor in the matrix and the composite elastic modulus were predicted accurately. Some important factors affecting stress concentrations, such as fiber volume fraction, fiber aspect ratio, end gap size, and modulus ratio, were also discussed.

  • PDF

양무한평판의 두 원공비렬이 응력집중에 미치는 영향 (The Effect of Two Circular Holes Arrangement on the Stress Concentration Factor in a Semi-infinite Plate)

  • 오세욱;박영철;김준영
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.110-119
    • /
    • 1990
  • This study is concerned about the stress concentration factor measurement by photoelastic method, for the case of two circular holes arrangement in 3mm semi-infinite plate under tensile load, the ratio of those two circular holes diameter, the ratio of distance apart from circular holes to breadth and the two holes arrangement angle with loading direction were varied. Besides, the measured stress concentration by photoelastic method around one circular hole was compared with that by strain-gage method.

  • PDF

SCP 및 GCP로 개량된 복합지반의 변위 양상에 관한 원심모델링 (Centrifuge Modeling on Displacement Shapes of Composite Ground Improved by SCP and GCP)

  • 허열;정소전;이처근;안광국
    • 한국지반환경공학회 논문집
    • /
    • 제7권5호
    • /
    • pp.57-66
    • /
    • 2006
  • 본 연구에서는 모래다짐말뚝(SCP) 및 쇄석다짐말뚝(GCP)으로 개량된 복합 지반의 응력 분담비, 말뚝 및 지반의 변형형태를 파악하기 위하여 말뚝의 치환율(20%, 40%, 60%)을 변화시키면서 연성재하 원심모형실험을 수행하였다. 실험결과, 동일 치환율에서 쇄석 다짐말뚝에 작용하는 응력이 모래다짐말뚝에 작용하는 응력보다 크게 나타났다. 치환율 40%에서 쇄석다짐말뚝으로 개량된 연약점토지반의 평균 응력분담비가 모래다짐말뚝을 설치한 경우보다 약간 크게 나타났다. GCP는 팽창파괴가 발생되었으며, SCP는 팽창 및 전단파괴가 동시에 발생함을 확인할 수 있었다.

  • PDF

원심모델링을 이용한 CSCP 및 SCP로 개량된 연약지반의 거동 (Behavior of Soft Ground Improved by CSCP and SCP Using Centrifuge Modeling)

  • 안광국
    • 한국지반공학회논문집
    • /
    • 제22권4호
    • /
    • pp.21-30
    • /
    • 2006
  • 본 연구에서는 조립질 말뚝으로 개량된 점토지반의 지지력, 응력분담비, 말뚝 및 지반의 변형형태를 파악하기 위하여 말뚝의 종류(CSCP, SCP)와 치환율(0, 20, 40, 60%)을 변화시키면서 원심모형실험을 수행하였다. 실험결과, CSCP와 SCP로 개량된 지반의 하중비는 치환율이 증가함에 따라 비례적으로 증가하였고, CSCP로 개량된 지반의 평균 지지력비가 SCP로 개량한 경우보다 $8{\sim}21%$ 정도 크게 평가되었다. CSCP로 개량된 지반의 평균 응력분담비가 SCP보다 크게 나타나 CSCP가 더 큰 응력을 부담하는 것으로 평가되었다. CSCP로 보강된 지반에서는 팽창파괴가 발생하였고, SCP로 보강된 지반에서는 팽창 및 전단파괴가 동시에 발생하였다.

실내시험을 이용한 저치환 보강지반의 평가 (Evaluation of the Low Replacement Reinforced Ground Using Laboratory Tests)

  • 배우석
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.131-137
    • /
    • 2008
  • SCP(Sand Compaction Pile) method that forms a composite ground by driving compacted sand piles into the soft ground. This method is one of the soil improvement techniques for reinforcing and strengthening soft ground deposits. This thesis describes the investigation on the behavior of soft ground reinforced with SCP by low improvement ratio. Direct shear test and consolidation test carried out to verified behavior of composite ground reinforced with SCP. Test results were discussed with reference to the amount of consolidation settlement, variation of shear resistance with area replacement ratio and effect of the stress concentration. And, laboratory model loading test carried out to verified the effect of the location and failure mode of reinforced embankment. Residual shear strength varies with the area replacement and constrict load in the low replacement ratio. Calculated stress concentration ratio overestimate than proposed valve by experimental, theoretical and analytical method. As regards the location, improving right below of the top of the slope was more effective than below of the toe of the slope. This thesis carried out to obtain fundamental information of behavior of the composit ground. Hereafter, centrifuge test that reproduce stress state of the in-situ must be necessary through the further study about pile penetration, reinforce position and construct time.

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

SCP 복합지반의 응력전이거동 해석 (Analysis of Stress Transfer Mechanism of SCP-Reinforced Composite Ground)

  • 김윤태;박현일;이형주;김상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.227-234
    • /
    • 2004
  • Sand compaction pile (SCP) method is composed of compacted sand pile inserted into the soft clay deposit by displacement method. SCP-reinforced ground is composite soil which consists of the SCP and the surrounding soft soil. When a surcharge load is applied on composite ground, time-dependent behavior occurs in the soft soil due to consolidation according to radial flow toward SCP and stress transfer also takes place between the SCP and the soft soil. This paper presents the numerical results of cylindrical composite ground that was conducted to investigate consolidation characteristics and the stress transfer mechanism of SCP-reinforced composite ground. The results show that the consolidation of soft clay has a significant effect on the stress transfer mechanism and stress concentration ratio of composite ground

  • PDF

Effect of Cutout Orientation on Stress Concentration of Perforated Plates with Various Cutouts and Bluntness

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • 제1권2호
    • /
    • pp.95-101
    • /
    • 2011
  • Perforated plates with cutouts (or holes) are widely used in structural members. These cutouts provide stress concentration in plates. Extensive studies have been carried out on stress concentration in perforated plates, which consider cutout shapes, boundary conditions, bluntness of cutouts, and more. This study presents stress concentration analyses of perforated plates with not only various cutouts and bluntness but also different cutout orientations. Especially, the effect of cutout orientation on stress concentration is emphasized since structural members have become more complicated recently. To obtain stress concentration patterns, a finite element program, ANSYS, is used. For the designated goal, three parameters are considered as follows: the shapes of polygonal cutouts (circle, triangle, and square), bluntness (a counter measure of radius ratio, r/R), and rotation of cutouts (${\theta}$). From the analyses, it is shown that, in general, as bluntness increases, the stress concentration increases, regardless of the shape and rotation. A more important finding is that the stress concentration increases as the cutouts become more oriented from the baseline, which is the positive horizontal axis (+x). This fact demonstrates that the orientation is also a relatively significant design factor to reduce stress concentration. In detail, in the case of the triangle cutout, orienting one side of the triangle cutout to be perpendicular to the applied tensile forces is preferable. Similarly, in the case of the square cutout, it is more advantageous to orient two sides of square cutout to be perpendicular to the applied tensile force. Therefore, at the design stage, determining the direction of a major tensile force is required. Then, by aligning those polygon cutouts properly, we can reduce stress concentration.

圓孔 이 있는 有限 直交異方性 Graphite / E Laminate 의 應力集中係數 (Stress concentration factors for finite orthotropic graphite/E laminates with a circular hole)

  • 홍창선
    • 대한기계학회논문집
    • /
    • 제4권3호
    • /
    • pp.113-118
    • /
    • 1980
  • Stresses were calculated for finite-width orthotropic laminates with a circular hole and remote uniaxial loading using a two-dimensional finite-element analysis with both uniform stress and uniform displacement boundary conditions. Five different laminates were analyzed: quasi-isotropic [0.deg./.+-.45.deg./90.deg.].$\_$s/, 0.deg., 90.deg., [0.deg./90.deg.]$\_$s/, and [.+-.45.deg.]$\_$s/, Computed results are presented for selected combinations of hole diameter-sheet-width ratio d/w and length-to width ratio L/w. For small L/w values, the stress-concentration factors K$\_$tn/ were significantly different for the uniform stress and uniform displacement boundary conditions. Typically, for the uniform stress conditions, the K$\_$tn/ values were much larger than for the infinite-strip reference conditions; however, for the uniform displacement conditon, they were only slighty smaller than for this reference. The results for long strips are also presented as width-correction factor. For d/w.leg.33, these width-correction factors are nearly equal for all five laminates.