• Title/Summary/Keyword: Stress Concentration(응력집중)

Search Result 412, Processing Time 0.023 seconds

Effect of the Semi-circular Relieving Groove on the Stress Concentration at the Fillet of the Stepped Bar under Axial Tension (축인장하(軸引張下)의 평판(平板)의 단부(段部) Fillet 근처(近處)의 Relieving Groove가 응력집중(應力集中)에 미치는 영향(影響))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.2
    • /
    • pp.5-10
    • /
    • 1969
  • A stepped bar with seimi-circular stress relieving groove near the fillet was subjected by axial tension in a polarized light field. On the stress concentration factor, the effect of the ratios of the fillet radius, the distance between two relieving grooves and the groove radius to the breath of the narrower portion of the stepped bar have been investigate. Observing the stress concentration in 48 models with various proportions, the conclusion arrived at were as follow: 1) If the fillet radius of the stepped bar is larger than half breadth of the narrower portion, the reduction of the stress concentrations can not be expected. 2) If the fillet radius is smaller than half breadth of the narrower portion of the stepped bar, the stress concentration can be droped to the reasonable range. 3) When the groove radius is larger than a quarter of the difference between the distance of two relieving grooves and the breadth of the stepped bar and smaller than a half of that, the stress concentration factors can have their possible minimum value. 4) When the sun of the breadth of the narrower portion of the stepped bar and twice of the relieving groove radius is smaller than the distance between two relieving grooves, minimum stress concentration can be obtained.

  • PDF

Fracture mechanical evaluation of fatigue strength of a single spot welded lap joint under tension-shear load (인장-전단하중을 받는 일점 Spot용접재의 파괴역학적 피로강도 평가)

  • 배동호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-50
    • /
    • 1991
  • According as the members and inner and outer plates of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. Therefore, it has been increasingly required to improve the fatigue strength of the spot welded structures. As one of the improving methods for such problem, the author had previously proposed the method of alleviating stress concentration at nugget edge of the spot weld part and improving its fatigue strength [1]. But, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic estimation method of them. In this report, by considering nugget edge of the spot weld part of the spot welded lap joint subjected to tensile load to the ligament crack, fatigue strength of various spot welded lap joints was estimated with the stress intensity factor (S.I.F.) K which is fracture mechanical parameter. It is known that evaluation of fatigue strength of the spot welded lap joint by the stress intensity factor (S.I.F.) K is more effective than the maximum stress $(\sigma_{ymax}$) at edge of the spot weld part on the center line of width of the plate.

  • PDF

A Study of Stress Analysis and Interaction of Stress between Micro Flaws and Inclusions (미소결함간의 응력의 간섭과 응력장 해석)

  • 송삼홍;김진봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1259-1268
    • /
    • 1995
  • The stress distribution around micro holes and the behavior of stress interaction between micro holes are considerd in the study. Several conclusions are extracted as follows : (1) The stress interaction varies with the distance e between micro holes. When the two micro holes are spaced in such a manner that theri two closest points are separated by a distance of micro hole radius (e=1), stress distribution is affected by a opposite micro hole in all the closest region. In addition, if two closest points are seperated by twice the distance of a micro hole radius (e=2), stress distribution is affected by a opposite micro hole in the region of -0.8.leq.x/r.leq.0.8 and the interaction effect can be neglected for e=4. (2)If the depth becomes larger than the radius, or the radius varies, the shape and magnitude of stress distribution around micro holes varies. (3) Hoop stress around a micro hole for the two dimensional configuration is larger than that of the three dimensional micro hole located on the surface of material for .theta. < 60.deg., but it is reversed for .theta > 60.deg.

Signal Characteristics of Fiber Brags Grating due to Internal Strain Gradient (광섬유 브래그 격자의 내부 변형률 구배로 인한 신호 특성)

  • 강동훈;김대현;홍창선;김천곤
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.32-36
    • /
    • 2002
  • Recently, the applications of composite materials become broader to civil engineering as well as mechanics and aerospace engineering. Cracks on the civil structures like bridges can cause stress concentration, which induces Peak splitting of fiber Bragg grating sensor and it makes strain measurements difficult. In this study, 4-point bending test of concrete beam with initial crack reinforced by composite patch was conducted in order to verify the effects of the stress concentration on the peak signal of FBG sensor and a novel method for signal maintenance.

Proposal of Bond Strength Evaluation Method for Overlay Concrete at Field (유한요소해석을 이용한 현장 덧씌우기 콘크리트의 부착강도 평가 방법 제안)

  • Lee, Bong-Hak;Hong, chang-Woo;Lee, Joo-Hyung;Kim, Seong-Hwan
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.295-300
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction defends upon band strength between old and the new concrete. Current adhesion strength measurement method is inaccurate method that ignore effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5 cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

Analysis of the Breaking Factor of Rotary Blade by Photo elastic Method -A Stress Concentration by Static Load- (광탄성법(光彈性法)에 의한 로터리 경운날의 파괴요인(破壞要因)에 대한 해석(解析) -정하중(靜荷重)에 의한 응력집중(應力集中)-)

  • Choi, S.I.;Kim, J.H.;Kim, C.S.;Kim, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-185
    • /
    • 1990
  • The break of rotary blade is occured from a stress concentration of the inside of blade by the outside impulsive load. In order to examine its inside stress and stress concentration of rotary blade, a epoxy plate which is suitable to applicate by photoelastic system is used to experiment. These results are summarized as follow. 1. Refer to the existence of bolt hole and a size of its of rotary blade, a stress concentration which cause the break of rotary blade is not exposed. 2. It is expected to be break to section of hold of rotary blade and the break of this is due to that there are concentrated by shearing force, bending moment and bending stress. 3. When the crack which caused from processing are set up to any location, the stress concentration taken to the creak point. 4. Without regard to the location of the reaction points of rotary blade, the bending stress which is greated than the bending moment is occured within about 6 em toward the center line of bolt hole and it was possible to break that section.

  • PDF

A Study on Fatigue Design of STS301L Fillet Welded Joint (STS 301L 필렛 용접이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.561-565
    • /
    • 2010
  • Stainless steel sheets are widely used as structural materials for the manufacture of railroad cars and commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. For the fatigue design of gas welded joints such as fillet joints and plug joints, it is necessary to obtain information on the stress distribution at the weldment and the fatigue strength of the gas welded joints. Moreover the influence of the geometrical parameters corresponding to the gas welded joints on the stress distribution and fatigue strength must be evaluated. ${\Delta}P-N_f$ curves were obtained from the data recorded in fatigue tests. Using these results, the ${\Delta}P-N_f$ curves were rearranged according the relation between $\Delta\sigma-N_f$ and the maximum stress at the edge of the fillet welded joint.

The Study about the Fatigue Strength Improvement Mechanism by the Processing of Fillet Welded Joint (필렛용접이음부의 후처리에 따른 피로강도 향상 메커니즘의 연구)

  • Lim, Cheong Kweon;Park, Moon Ho;Chang, Chun Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.319-327
    • /
    • 1999
  • This study makes mechanism of the fatigue strength improvement by the processing of weld toe clear for the vertical cross rib specimens which was made fillet weld joint, also it proposes to the appropriate later processing. As a result of tension fatigue test, the fatigue strength improvement could have been seen in later processed specimens than as-weld specimens. Especially fatigue crack initial life $N_c$ increased in specimens which processed grinder after hammer-peening. Also, fatigue crack propagation life $N_p$ improved more in hammer-peening specimens than as-weld or TIG specimens. It thinks that $N_c$ is because of the geometrical shape of weld toe, i.e. the relaxation of the stress concentration and also that $N_p$ is because the big compression residual stress which was introduced in the surface by hammer-peening is restraining the propagation of fatigue crack.

  • PDF

Fatigue Analysis of Spot-welded Multi-Lap Joint of STS301L Using the Maximum Stress (최대응력을 이용한 STS301L 다중접합 점용접 이음재의 피로해석)

  • 남태헌;정원석;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.101-107
    • /
    • 2003
  • Since stainless steel sheets have good mechanical properties, weldability, appearance and corrosion resistance, they are commonly used as one of the structural materials of the railroad cars or the commercial vehicles which are manufactured by the spat welding. Among the many kinds of spot welded lap joints, it can be found that multi-lap joints are employed in their body structure. But, fatigue strength of these joints is lower than that of base metal due to high stress concentration at the nugget edge of spot weld and is considerably influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic design criterion for the long life design of the spot-welded body structures. In this paper, the stress distribution and deformation around the spot-welded multi-lap joints subjected to tensile shear load was numerically analyzed. Also, the $\Delta$P-Nf curve was obtained by fatigue tests. Using these results, $\Delta$P-Nf curves were rearranged in to the ${\Delta}{\sigma}$-Nf relation with the maximum stress at nugget edge of spot weld.