• Title/Summary/Keyword: Stress Aging

Search Result 781, Processing Time 0.032 seconds

The protective effect of Perilla frutescens from ONOO--induced oxidative stress and antiaging effect under cellular system (Cellular system에서의 깻잎의 ONOO-에 의한 산화적 스트레스 개선 및 항노화 효과)

  • Kim, Hyun Young;Hwang, Bo Ra;Wu, Ting Ting;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.467-471
    • /
    • 2012
  • In this study, we investigated the antioxidative and antiaging activity of Perilla frutescens using LLC-$PK_1$ porcine renal epithelial cell and WI-38 human diploid fibroblast cell. The extract from Perilla frutescens showed strong protective effect against nitric oxide (NO) and superoxide ($O_2{^-}$)-induced oxidative stress generated by sodium nitroprusside (SNP) and pyrogallol, respectively. The result showed that P. frutescens increased the cell viability and showed scavenging activity of NO and $O_2{^-}$. In addition, the extract of P. frutescens exerted the protective effect against peroxynitrite ($ONOO^-$) induced by 3-morpholinosydnonimine. It suggests that P. frutescens would have the protective role against $ONOO^-$ itself and its precursors, NO and $O_2{^-}$. Furthermore, the aging model of hydrogen peroxide ($H_2O_2$)-treated WI-38 human diploid fibroblast was employed to investigate the anti-aging effect of P. frutescens. $H_2O_2$-treated WI-38 cells showed the loss of cell viability, however before-treatment with P. frutescens to WI-38 cells under premature senescence could delay the cellular aging process. The present study suggests the antioxidative and antiaging potential against free radical-induced oxidative damage of P. frutescens.

Mechanism of aging and prevention (노화의 기전과 예방)

  • Kim, Jay Sik
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.104-108
    • /
    • 2001
  • Aging is a senescence and defined as a normal physiologic and structural alterations in almost all organ systems with age. As Leonard Hayflick, one of the first gerontologists to propose a theory of biologic aging, indicated that a theory of aging or longevity satisfies the changes of above conditions to be universal, progressive, intrinsic and deleterious. Although a number of theories have been proposed, it is now clear that cell aging (cell senescence) is multifactorial. No single mechanism can account for the many varied manifestations of biological aging. Many theories have been proposed in attempt to understand and explain the process of aging. Aging is effected in individual by genetic factors, diet, social conditions, and the occurrence of age-related diseases as diabetes, hypertension, and arthritis. It involves an endogenous molecular program of cellular senescence as well as continuous exposure throughout life to adverse exogenous influences, leading to progressive infringement on the cell's survivability so called wear and tear. So we could say the basic mechanism of aging depends on the irreversible and universal processes at cellular and molecular level. The immediate cause of these changes is probably an interference in the function of cell's macromolecules-DNA, RNA, and cell proteins-and in the flow of information between these macromolecules. The crucial questions, unanswered at present, concerns what causes these changes in truth. Common theories of aging are able to classify as followings for the easy comprehension. 1. Biological, 1) molecular theories - a. error theory, b. programmed aging theory, c. somatic mutation theory, d. transcription theory, e. run-out-of program theory, 2) cellular theories - a. wear and tear theory, b. cross-link theory, c. clinker theory, d. free radical theory, e. waste product theory, 3) system level theory-a. immunologic/autoimmune theory, 4) others - a. telomere theory, b. rate of living theory, c. stress theory, etc. Prevention of aging is theoretically depending on the cause or theory of aging. However no single theory is available and no definite method of delaying the aging process is possible by this moment. The most popular action is anti-oxidant therapy using vitamin E and C, melatonin and DHEA, etc. Another proposal for the reverse of life-span is TCP-17 and IL-16 administration from the mouse bone marrow B cell line study for the immunoglobulin VDJ rearrangement with RAG-1 and RAG-2. Recently conclusional suggestion for the extending of maximum life-span thought to be the calory restriction.

  • PDF

The Variation of Structure and Physical Properties of XLPE during Thermal Aging Process (가교 폴리에틸렌의 열노화에 따른 구조와 물성의 변화)

  • 이미영;김철환;구철수;김복렬;이영관
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.249-254
    • /
    • 2003
  • The variation of chemical structure and physical properties of crosslinked polyethylene (XLPE) during thermal aging process was investigated. The formation of carbonyl functional group resulting from thermal oxidation reaction of XLPE was monitored using X-ray photoelectron spectroscopy and near infrared (NIR) spectroscopy. It was observed that the intensity of carbonyl peak observed at 1715 nm linearly increased with aging time in NIR spectroscopy. The linear relationship between NIR peak absorbance and aging time confirmed that NIR spectroscopy might be used as a proper tool for monitoring the aging process of polymeric materials. Also the formation of crosslinks during the aging process was monitored using thermal mechanical analysis, stress-strain test, and Shore hardness test. The change in the physical properties, such as the increase in the glass transition temperature from 110 to 132$^{\circ}C$, the decrease in the strain from 265 to 110%, as well as the increase in the shore D hardness from 32 to 50, was observed during the aging process.

Effects of Ichungwhan on the Aging Process (이정환(二精丸)이 노화과정에 미치는 영향)

  • Jeong, Ji-Cheon;Hyun, Min-Kyung
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.379-389
    • /
    • 2005
  • Objectives: It is well known that aging and aging-related diseases are linked to the increased level of oxidative stress caused by reactive oxygen species(ROS) and reactive nitrogen species(RNS). Nonprotein-SH decreases during aging, while substances such as ROS, nitric oxide(NO), peroxynitrite($ONOO^-$), myeloperoxidase(MPO), and dityrosine show a significant increase. This study investigated the effect of Ichungwhan on the aging process by examining its effect on the generation of the above-mentioned substances. Methods: Four comparison groups of SD rats were used. They were 6 month-old rats, 24 month-old rats, and 24 month-old rats fed with food containing 0.1% and 0.3% of Ichungwhan extract. The amount of NO, $ONOO^-$, and ROS in the rats' kidneys were examined using a fluorescence microplate reader. The reagents used for this purpose include: dihydrorhodamine 123 (DHR 123), 2',7' -dichlorodihydrofluorescein, diacetate(DCFDA), and 4,5-diaminofluorescein(DAF-2). A spectrophotometer was used to investigate the reactivity of nonprotein-SH and myeioperoxidase(MPO), using reagents such as trichloroacetic acid(TCA) and tetramethylbenzidine(TMB). The amounts of MPO protein and dityrosine were measued by western blot. Results: The observed effects of Ichungwhan on rats were as follows: increase of nonprotein-SH; effective decrease of RNS level by suppression of the generation system of $ONOO^-$ and NO; decrease of ROS level; decrease of the MPO reactivity and the subsequent reduction of amount of MPO protein; retardation of dityrosine formation. It can be hypothesized, therefore, that Ichungwhan affects both the earlier and later phases of the molecular inflammatory process, and retards the aging process. Conclusions: Empirical evidence in this study supports a role for Ichungwhan in generation mechanisms of aging process-linked substances ROS, NO, $ONOO^-$, nonprotein-SH, MPO and dityrosine. Affects contrary to the aging process observed in rats beg further empiricism to investigate potential application of Ichungwhan as a medication for age-related diseases in humans.

  • PDF

Morphological Study of Acute Lung Injury Induced by Interleukin-1$\alpha$ Intratracheally in Young and Old Rats (젊은 흰쥐와 늙은 흰쥐에서 인터루킨-1$\alpha$로 유도된 급성폐손상에 관한 형태학적 연구)

  • 조현국;이영만;박원학
    • Biomedical Science Letters
    • /
    • v.3 no.2
    • /
    • pp.139-150
    • /
    • 1997
  • In order to investigate the effect of aging and the $H_2O$$_2$ localization in association with histological, ultrastructural, and cytochemical studies in lung tissue after interleukin-1$\alpha$(IL-1) induced lung injury, an acute lung injury was induced by instillation of IL-1 into the trachea. Both of 4- and 20-months-old male rats, protein contents in IL-1 treated branchoalveolar lavage increased significantly compared to each control rats. Acute lung injury occured by oxidative stress because neutrophils accumulated in vascular lumen and formed the adhesion with endothelial cells. As these cause, tissue proteins were exuded and leukocytes migrated into the alveolar lumen. Neverthless in these lung injury $H_2O$$_2$ localization of IL-1 treated 20 months rats was not different compared to IL-1 treated 4 months rats. After all aging was not a factor to accelate IL-1 induced lung injury. Based on these results, it is suggested that neutrophil infilteration might be an important cause in acute lung injury, and aging is not a factor to change the acute lung injury by oxidative stress.

  • PDF

Effect of Low-Temperature Sintering on Electrical Properties and Aging Behavior of ZVMNBCD Varistor Ceramics

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.502-508
    • /
    • 2020
  • This paper focuses on the electrical properties and stability against DC accelerated aging stress of ZnO-V2O5-MnO2-Nb2O5-Bi2O3-Co3O4-Dy2O3 (ZVMNBCD) varistor ceramics sintered at 850 - 925 ℃. With the increase of sintering temperature, the average grain size increases from 4.4 to 11.8 mm, and the density of the sintered pellets decreases from 5.53 to 5.40 g/㎤ due to the volatility of V2O5, which has a low melting point. The breakdown field abruptly decreases from 8016 to 1,715 V/cm with the increase of the sintering temperature. The maximum non-ohmic coefficient (59) is obtained when the sample is sintered at 875 ℃. The samples sintered at below 900 ℃ exhibit a relatively low leakage current, less than 60 mA/㎠. The apparent dielectric constant increases due to the increase of the average grain size with the increase of the sintering temperature. The change tendency of dissipation factor at 1 kHz according to the sintering temperature coincides with the tendency of the leakage current. In terms of stability, the samples sintered at 900 ℃ exhibit both high non-ohmic coefficient (45) and excellent stability, 0.8% in 𝚫EB/EB and -0.7 % in 𝚫α/α after application of DC accelerated aging stress (0.85 EB/85 ℃/24 h).

Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy (β-type Ti-14Mo-3Nb-3Al-0.2Si 합금의 열처리 조건에 따른 기계적 특성)

  • Kim, Tae Ho;Lee, Jun Hee;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.

Oocyte quality is closely linked to DRP1 derived-mitochondrial fission and mitophagy by the NAD+ biosynthesis in a postovulatory-aging model of pigs

  • Ji-Hyun Shin;Seul-Gi Yang;Hyo-Jin Park;Deog-Bon Koo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.67-80
    • /
    • 2024
  • Background: Post-ovulatory aging (POA) of oocytes is related to a decrease in the quality and quantity of oocytes caused by aging. Previous studies on the characteristics of POA have investigated injury to early embryonic developmental ability, but no information is available on its effects on mitochondrial fission and mitophagy-related responses. In this study, we aimed to elucidate the molecular mechanisms underlying mitochondrial fission and mitophagy in in vitro maturation (IVM) oocytes and a POA model based on RNA sequencing analysis. Methods: The POA model was obtained through an additional 24 h culture following the IVM of matured oocytes. NMN treatment was administered at a concentration of 25 μM during the oocyte culture process. We conducted MitoTracker staining and Western blot experiments to confirm changes in mitochondrial function between the IVM and POA groups. Additionally, comparative transcriptome analysis was performed to identify differentially expressed genes and associated changes in mitochondrial dynamics between porcine IVM and POA model oocytes. Results: In total, 32 common genes of apoptosis and 42 mitochondrial fission and function uniquely expressed genes were detected (≥ 1.5-fold change) in POA and porcine metaphase II oocytes, respectively. Functional analyses of mitochondrial fission, oxidative stress, mitophagy, autophagy, and cellular apoptosis were observed as the major changes in regulated biological processes for oocyte quality and maturation ability compared with the POA model. Additionally, we revealed that the activation of NAD+ by nicotinamide mononucleotide not only partly improved oocyte quality but also mitochondrial fission and mitophagy activation in the POA porcine model. Conclusions: In summary, our data indicate that mitochondrial fission and function play roles in controlling oxidative stress, mitophagy, and apoptosis during maturation in POA porcine oocytes. Additionally, we found that NAD+ biosynthesis is an important pathway that mediates the effects of DRP1-derived mitochondrial morphology, dynamic balance, and mitophagy in the POA model.

Reduction of Oxidative Stress by Chondroitin Sulfate in the Ovariectomy-Induced Aging Rat (난소절제로 유도한 노화쥐에서 chondroitin sulfate에 의한 산화 스트레스의 감소효과)

  • 이진영;하배진
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.280-285
    • /
    • 2004
  • The ovarian hormone-deficiency induced ovariectomy rat is widely used as an aging model due to its practicality, convenience, and cost effectiveness. The surgically ovariectomized rat induces reactive oxygen species (ROS) generation like aging phenomena. Free oxygen radicals have been proposed as important causative agents of aging. The purpose of this study was to investigate the effect of chondroitin sulfate (CS) to prevent ovariectomy (OVX)-induced oxidative stress. The OVX rats were given intraperitoneally CS at doses of 100 mg/kg and 200 mg/kg daily for fifteen weeks. Malondialdehyde (MDA) levels were determined as well as the activities of superoxide dismutase (SOD), catalase (CAT), reduced-glutathione (GSH), oxidized-glutathione (GSSG), glutathione peroxidase (GPx) in the liver. The liver antioxidative enzyme activity was elevated while MDA concentration decreased in all CS treated animals. The results demonstrated that CS reduced oxidative stress in a dose dependent manner. These results suggest that CS might be a useful candidate for antioxidative reagent.

Role of Inducibility of Superoxide Dismutases and Metallothionein of Mouse Lungs by Paraquat in Aging (Paraquat에 의한 생쥐 폐의 Superoxide Dismutases와 Metallothionein의 유도능과 노화와의 관계)

  • Lee, Tae-Bum;Park, Yoo-Hwan;Choi, Cheol-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.5
    • /
    • pp.579-590
    • /
    • 2001
  • Background : The aging process may be induced, at least in part, by reactive oxygen species(ROS). It has been thought that the lung could be a good source of ROS because it has a high oxygen tension. In the present study, we invetigated the inducibility of the first and last lines against oxidative stress, superoxide dismutases(CujZn-SOD and Mn-SOD) as a scavenger of ${O_2}^-\;{\cdot}$ and metallothionein(MT) as a scavenger of $OH{\cdot}$, respectively, in mouse lungs with age. Methods : Oxidative stress was induced by paraquat, an intracellular superoxide generator, at 1, 4, 8, and 12 months of age and then SODs and MT mRNAs were determined by RT-PCR method. Results : The steady-state level of Mn-SOD mRNA increased from 1 to 8 months but decreased thereafter. However, Mn-SOD mRNA was not induced by paraquat after 1 month. On the other hand, there was no change in the steady-state level of Cu/Zn-SOD mRNA, which decreased abruptly at 12 months of age. Additionally, Cu/Zn-SOD mRNA was not induced by paraquat at any age. There was no change in the steady-state level of MT mRNA with age whereas its inducibility by paraquat was intact at all ages. Conclusion : These results indicate that lack of induction of SODs with age may be one of the causative factors in the aging process while induction of MT may play an important role in the defense against oxidative stress. It is therefore implicated that the tissue antioxidant/prooxidant balance could be one of determinants of mean life span.

  • PDF