Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.2.121

Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy  

Kim, Tae Ho (Department of Advanced Materials Engineering, Chungnam National University)
Lee, Jun Hee (Department of Advanced Materials Engineering, Chungnam National University)
Hong, Sun Ig (Department of Advanced Materials Engineering, Chungnam National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.2, 2011 , pp. 121-127 More about this Journal
Abstract
The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.
Keywords
alloy; aging; mechanical properties; tensile test;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 H. Fujii and H. G. Suzuki, Mater. Trans. JIM. 34, 373 (1993).
2 T. Furuhara, H. Nakamori, and T. Maki, Mater. Trans. JIM. 33, 585 (1992).
3 M. Okada and T. Nishikawa, J. Jpn. Inst. Met. 50, 555 (1986).
4 N. Niwa, A. Arai, H. Takatori, and K. Ito, ISIJ Int. 31, 856 (1991).   DOI
5 T. Inaba, K. Ameyama, and M. Tokizane, ISIJ Int. 31, 792 (1991).   DOI
6 K. Ameyama, K. Murakami, T. Maki, and I. Tamura, J. Jpn. Inst. Met. 49, 1045 (1985).
7 K. Ameyama, K. Yamashita, T. Inaba, and M. Tokizane, J. Jpn. Inst. Met. 53, 1098 (1989).
8 T. Makino and S. Matsuda, Proc. International Conference on Thermomechanical Processing of Steel and other Materials (eds, T. Chanda, T. Sakai) p.1519, TMS, Warrendals, PA, (1997).
9 C. Ouchi, H. Suenaga, and Y. Kohsaka, Proc. Sixth Would Conference on Titanium (eds, P. Lacombe, et al.) p.819, Les Editions de Physique, Paris, (1989).
10 D. Lee, Metall. Trans. 1, 1607 (1970).   DOI
11 A. M. Garde, E. Aigeltinger, B. N. Woodruff, and R. E. Reed-Hill, Metall. Trans. 6A, 1183 (1975).
12 S. I. Hong, W. S. Ryu, and C. S. Rim, J. Nucl. Mater. 116, 314 (1983).   DOI   ScienceOn
13 M. R. Winstone, R. D. Rawlings, and D. R. F. West, J. Less-Common Met. 31, 143 (1973).   DOI   ScienceOn
14 P. Harrison, M. R. Winstone, and R. D. Rawlings, J. Less-Common Met. 42, 137 (1975).   DOI   ScienceOn
15 S. K. Kim, H. S. Kim, S. I. Hong, C. B. Choi, and K. T. Kim, J. Kor. Inst. Met. & Mater. 37, 1482 (1999).
16 S. I. Hong, Mater. Sci. Eng. 76, 77 (1985).
17 S. Y. Lee, K. T. Kim, and S. I. Hong, J. Nucl. Mater. 392, 63 (2009).   DOI   ScienceOn
18 S. Ko, S. I. Hong, and K. T. Kim, J. Nucl. Mater. 404, 154 (2010).   DOI   ScienceOn
19 S. I. Hong, Mater. Sci. Eng. 79, 1 (1986).   DOI   ScienceOn
20 S. I. Hong, Mater. Sci. Eng. 120, 1 (1984).
21 S. I. Hong, Mater. Sci. Eng. 91, 137 (1987).
22 J. H. Kim, N. S. Reddy, J. T. Yeom, J. K. Hong, C. S. Lee, and N. K. Park, Met. Mater. Int. 15, 427 (2009).   DOI   ScienceOn