• Title/Summary/Keyword: Streptomyces species

Search Result 152, Processing Time 0.025 seconds

Molecular and Biochemical Characterization of Xylanase Produced by Streptomyces viridodiastaticus MS9, a Newly Isolated Soil Bacterium

  • Jong-Hee Kim;Won-Jae Chi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.176-184
    • /
    • 2024
  • A xylan-degrading bacterial strain, MS9, was recently isolated from soil samples collected in Namhae, Gyeongsangnam-do, Republic of Korea. This strain was identified as a variant of Streptomyces viridodiastaticus NBRC13106T based on 16S rRNA gene sequencing, DNA-DNA hybridization analysis, and other chemotaxonomic characteristics, and was named S. viridodiastaticus MS9 (=KCTC29014=DSM42055). In this study, we aimed to investigate the molecular and biochemical characteristics of a xylanase (XynCvir) identified from S. viridodiastaticus MS9. XynCvir (molecular weight ≈ 21 kDa) was purified from a modified Luria-Bertani medium, in which cell growth and xylanase production considerably increased after addition of xylan. Thin layer chromatography of xylan-hydrolysate showed that XynCvir is an endo-(1,4)-β-xylanase that degrades xylan into a series of xylooligosaccharides, ultimately converting it to xylobiose. The Km and Vmax values of XynCvir for beechwood xylan were 1.13 mg/ml and 270.3 U/mg, respectively. Only one protein (GHF93985.1, 242 amino acids) containing an amino acid sequence identical to the amino-terminal sequence of XynCvir was identified in the genome of S. viridodiastaticus. GHF93985.1 with the twin-arginine translocation signal peptide is cleaved between Ala-50 and Ala-51 to form the mature protein (21.1 kDa; 192 amino acids), which has the same amino-terminal sequence (ATTITTNQT) and molecular weight as XynCvir, indicating GHF93985.1 corresponds to XynCvir. Since none of the 100 open reading frames most homologous to GHF93985.1 listed in GenBank have been identified for their biochemical functions, our findings greatly contribute to the understanding of their biochemical characteristics.

Stringent Factor Regulates Antibiotics Production and Morphological Differentiation of Streptomyces clavuligerus

  • RYU , YONG-GU;JIN, WOOK;KIM, JIN-YOUNG;KIM, JAE-YOUNG;LEE, SANG-HEE;LEE, KYE-JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1170-1175
    • /
    • 2004
  • The involvement of the relA and rsh genes in the morphological and physiological differentiation of Streptomyces clavuligerus was evaluated with the relA and rsh genes mutants. The morphological differentiation of S. clavuligerus was greatly affected by the disruption of the relA gene, but not very much by the disruption of the rsh gene. The altered morphological characteristics were completely restored by the complementation of the corresponding disrupted genes. Thus, it was apparent that the mycelial morphology and clavulanic acid production were severely affected by the disruption of the relA gene. Production of clavulanic acid in the submerged batch culture and glycerol-limited chemostat showed that production was inversely related to the specific growth rate in the wild-type strain. However, the production of clavulanic acid in the ${\Delta}relA$ and ${\Delta}rsh$ null mutants was completely abolished. Therefore, it seems plausible that the stringent response of S. clavuligerus to starvation for amino acids is governed mainly by ReIA, rather than Rsh, and that the (p)ppGpp synthesized immediately after the depletion of amino acids triggers the initiation of pathways for both morphological and physiological differentiation in this species.

Differentiation of Actinomycete Genera Based on Partial rpoB Gene Sequences

  • Kim, Bum-Joon;Koh, Young-Hwan;Chun, Jong-Sik;Kim, Chang-Jin;Lee, Seung-Hyun;Cho, Moon-Jae;Hyun, Jin-Won;Lee, Keun-Hwa;Cha, Chang-Yong;Kook, Yoon-Hoh
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.846-852
    • /
    • 2003
  • rpoB DNAs (279 bp) from 34 species of 5 actinomycete genera were sequenced and a phylogenetic tree was constructed based on the sequences obtained. The genera were clearly differentiated in the rpoB tree, forming clades specific to their respective genus. In addition, 2 signature amino acid residues specific to Streptomyces were found in a multiple alignment of the deduced amino acid sequences. To empirically confirm that this rpoB gene analysis system could be used to differentiate actinomycete isolates, the proposed system was used to identify 16 actinomycete isolates from Jeju Island. All isolates were successfully differentiated into the genera Streptomyces and Micromonospora. Accordingly, this is the first report that an rpoB sequence analysis has been effectively used to differentiate actinomycete strains at the genus level.

Purification and Structure Determination of Antifungal Phospholipids from a Marine Streptomyces

  • Cho, Ki-Woong;Seo, Young-Wan;Yoon, Tae-Mi;Shin, Jong-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.709-715
    • /
    • 1999
  • A series of antifungal compounds were obtained from the methanol extract of the mycelium from marine actinomycetes M428 which was identified as a Stereptomyces species by fatty acid composition and biochemical characteristics. These compounds were purified by combined chromatographic techniques and the structures were characterized with spectroscopic methods including 1D and 2D NMR, and mass spectrometry as sn-l lysophosphatidyl inositols. The side chains were established by chemical degradation followed by GC analysis to be 14-methyl pentadecanoic acid (iso-palmitic acid, i-C16:0, compound A) and 13-methyl tetradecanoic acid (iso-pentadecanoic acid, i-C15:0, compound B). These compounds displayed highly selective antifungal activity against C. albicans with MIC values of $5{\;}\mu\textrm{g}/ml$ (compound A) and $2.5{\;}\mu\textrm{g}/ml$ (compound B), while it had almost negligible antibiotic activity against E. coli and P aerogenosa with MIC value higher than $50{\;}\mu\textrm{g}/ml$ and no cytotoxic activities against human myeloma leukemia K562 ($IC_{50}>100{\;}\mu\textrm{g}/ml$).

  • PDF

Effect of Scenedesmus sp. CHK0059 on Strawberry Microbiota Community

  • Cho, Gyeongjun;Jo, Gyeong Seo;Lee, Yejin;Kwak, Youn-Sig
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.862-868
    • /
    • 2022
  • Microalgae are photosynthetic cyanobacteria and eukaryotic microorganisms, mainly living in the water. In agriculture, numerous studies have been conducted to utilize microalgae as a biostimulant resource. Scenedesmus has been known to be one such microalga that can promote plant growth by secretion of auxin or cytokinin hormone analogs. However, no research has been performed on the effect of microalgae treatment on plant microbiota communities. This study was conducted to investigate the mode of action of microalgae as biostimulants in a plant microbiota perspective by using Scenedesmus sp. CHK0059 (also known as species Chlorella fusca), which has been well documented as a biostimulant for strawberries. The strawberry cultivar Keumsil was bred with Seolhyang and Maehyang as the parent cultivars. Using these three cultivars, microbiota communities were evaluated for changes in structural composition according to the CHK0059 treatment. CHK0059-treated Seolhyang, and CHK0059-untreated Maehyang were similar in microbial diversity in the endosphere. From a microbiota community perspective, the diversity change showed that CHK0059 was affected by the characteristics of the host. Conversely, when CHK0059 treatment was applied, populations of Streptomyces and Actinospica were observed in the crown endosphere.

Streptochlorin Isolated from Streptomyces sp. Induces Apoptosis in Human Hepatocarcinoma Cells Through a Reactive Oxygen Species-Mediated Mitochondrial Pathway

  • Shin, Dong-Yeok;Shin, Hee-Jae;Kim, Gi-Young;Cheong, Jae-Hun;Choi, Il-Whan;Kim, Se-Kwon;Moon, Sung-Kwon;Kang, Ho-Sung;Choi, Yung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1862-1867
    • /
    • 2008
  • Streptochlorin is a small molecule isolated from marine Streptomyces sp. that is known to have antiangiogenic and anticancer properties. In this study, we examined the effects of this compound on reactive oxygen species (ROS) production and the association of these effects with apoptotic tumor cell death, using a human hepatocarcinoma Hep3B cell line. The results of this study demonstrated that streptochlorin mediates ROS production, and that this mediation is followed by a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\Psi}_m$), activation of caspase-3, and downregulation of antiapoptotic Bcl-2 protein. The quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the streptochlorin-induced apoptosis effects via inhibition of ROS production, MMP collapse, and the subsequent activation of caspase-3. These observations clearly indicate that ROS are involved in the early molecular events in the streptochlorin-induced apoptotic pathway. Taken together, our data imply that streptochlorin-induced ROS is a key mediator of MMP collapse, which leads to the caspase-3 activation, culminating in apoptosis.

Antibiotic and Phytotoxic Activities of Ophiobolins from Helminthosporium Species

  • Kim, Hyun-Ju;Kim, Jin-Cheol;Kim, Byung-Sup;Kim, Hong-Gi;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 1999
  • Twenty isolates of Helminthosporium species were obtained from various grass plants and tested for controlling efficacy on the development of plant diseases. An isolate of Helminthosporium sp. TP-4 was chosen and six antibiotic substances were purified from cultures of the fungus by repeated silica gel column chromatography and preparative thin-layer chromatography. They were identified as ophiobolin a, 6-epiophiobolin A, 3-anhydroophiobolin A, 3-anhydro-6-epiophiobolin A, iphiobolin B, and iphiobolin I mainly by mass spectrometry and nuclear magnetic resonance spectrometry. Ophiobolins inhibited the growth of a grampositive bacterium Streptomyces griseus, but were not active against gram-negative bacteria. They also showed an antifungal activity. In in vivo tests, iphiobolin B exhibited potent controlling activities against rice blast, tomato late blight, and wheat leaf rust with control values more than 90% and 70% at concentration of $500\mu\textrm{m}$/ml and 100 ${\mu}{\textrm}{m}$/ml. Ophiobolin A and 6-epiophiobolin A controlled the development of wheat leaf rust more than 80% at concentrations of 100 /ml and $500\mu\textrm{m}$/ml respectively. 3-Anhydro-6-epiophiobolin A was not active against any plant disease. On the other hand, the A-series ophiobolins other than 3-anhydroophiobolin A showed stronger phytotoxic activity in a leaf-wounding assay using 8 plant species than those of 3-anhydroophiobolin A, ophiobolin B, and ophiobolin I. The results indicate that there is little correlation between antifungal activity and phytotoxicity of ophiobolins.

  • PDF

A report of 26 unrecorded bacterial species in Korea, isolated from urban streams of the Han River watershed in 2018

  • Joung, Yochan;Jang, Hye-Jin;Kim, Myeong Woon;Hwang, Juchan;Song, Jaeho;Cho, Jang-Cheon
    • Journal of Species Research
    • /
    • v.8 no.3
    • /
    • pp.249-258
    • /
    • 2019
  • Owing to a distinct environmental regime and anthropogenic effects, freshwater bacterial communities of urban streams are considered to be different from those of large freshwater lakes and rivers. To obtain unrecorded, freshwater bacterial species in Korea, water and sediment samples were collected from various urban streams of the Han River watershed in 2018. After plating the freshwater samples on R2A agar, approximately 1000 bacterial strains were isolated from the samples as single colonies and identified using 16S rRNA gene sequence analyses. A total of 26 strains, with >98.7% 16S rRNA gene sequence similarity with validly published bacterial species but not reported in Korea, were determined to be unrecorded bacterial species in Korea. The unrecorded bacterial strains were phylogenetically diverse and belonged to four phyla, six classes, 12 orders, 16 families, and 21 genera. At the generic level, the unreported species were assigned to Nocardioides, Streptomyces, Microbacterium, Kitasatospora, Herbiconiux, Corynebacterium, and Microbacterium of the class Actinobacteria; Paenibacillus and Bacillus of the class Bacilli; Caulobacter, Methylobacterium, Novosphingobium, and Porphyrobacter of the class Alphaproteobacteria; Aquabacterium, Comamonas, Hydrogenophaga, Laribacter, Rivicola, Polynucleobacter, and Vogesella of the class Betaproteobacteria; Arcobacter of the class Epsilonproteobacteria; and Flavobacterium of the class Flavobacteriia. The details of the 26 unreported species, including Gram reaction, colony and cell morphology, biochemical properties, and phylogenetic position are also provided in the strain descriptions.

Modulation of Escherichia coli RNase E. Action by RraAS2, a Streptomyces coelicolor Ortholog of RraA (Streptomyces coelicolor의 RraA 동족체인 RraAS2에 의한 Escherichia coli RNase E 활성조절)

  • Ahn, Sang-Mi;Shin, Eun-Kyoung;Yeom, Ji-Hyun;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.93-97
    • /
    • 2008
  • RraA is a recently discovered protein inhibitor that regulates the enzymatic activity of RNase E, which plays a major role in the decay and processing of RNAs in Escherichia coli. It has also been shown to regulate the activity of RNase ES, a functional Streptomyces coelicolor ortholog of RNase E, which has 36% identity to the amino-terminal region of RNase E. There are two open reading frames in S. coelicolor genome that can potentially encode proteins having more than 35.4% similarity to the amino acid sequence of RraA. DNA fragment encoding one of these RraA orthologs, designated as RraAS2 here, was amplified and cloned in to E. coli vector to test whether it has ability to regulate RNase E activity in E. coli cells. Co-expression of RraAS2 partially rescued E. coli cells over-producing RNase E from growth arrest, although not as efficiently as RraA, induced by the increased ribonucleolytic activity in the cells. The copy number of ColEl-type plasmid in these cells was also decreased by 14% compared to that in cells over-producing RNase E only, indicating the ability of RraAS2 to inhibit RNase E action on RNA I. We observed that the expression level of RraAS2 was lower than that of RraA by 4.2 folds under the same culture condition, suggesting that because of inefficient expression of RraAS2 in E. coli cells, co-expression of RraAS2 was not efficiently able to inhibit RNase E activity to the level for proper processing and decay of all RNA species that is required to restore normal cellular growth to the cells over-producing RNase E.

Functional Analysis of an Antibiotic Regulatory Gene, afsR2 in S. lividans through DNA microarray System (DNA 마이크로어레이 시스템 분석을 통한 S. lividans 유래 항생제 조절유전자 afsR2 기능 분석)

  • Kim, Chang-Young;Noh, Jun-Hee;Lee, Han-Na;Kim, Eung-Soo
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2009
  • AfsR2 in Streptomyces lividans, a 63-amino acid protein with limited sequence homology to Streptomyces sigma factors, has been known for a global regulatory protein stimulating multiple antibiotic biosynthetic pathways. Although the detailed regulatory mechanism of AfsK-AfsR-AfsR2 system has been well characterized, very little information about the AfsR2-dependent down-stream regulatory genes were characterized. Recently, the null mutant of afsS in S. coelicolor (the identical ortholog of afsR2) has been characterized through DNA microarray system, revealing that afsS deletion regulated several genes involved in antibiotic biosynthesis as well as phosphate-starvation. Through comparative DNA microarray analysis of afsR2-overexpressed S. lividans, here we also identify several afsR2-dependent genes involved in phosphate starvation, morphological differentiation, and antibiotic regulation in S. lividans, confirming that the AfsR2 plays an important pleiotrophic regulatory role in Streptomyces species.