DOI QR코드

DOI QR Code

Molecular and Biochemical Characterization of Xylanase Produced by Streptomyces viridodiastaticus MS9, a Newly Isolated Soil Bacterium

  • Jong-Hee Kim (Department of Food and Nutrition, Seoil University) ;
  • Won-Jae Chi (Species Diversity Research Division, National Institute of Biological Resources)
  • Received : 2023.09.20
  • Accepted : 2023.11.03
  • Published : 2024.01.28

Abstract

A xylan-degrading bacterial strain, MS9, was recently isolated from soil samples collected in Namhae, Gyeongsangnam-do, Republic of Korea. This strain was identified as a variant of Streptomyces viridodiastaticus NBRC13106T based on 16S rRNA gene sequencing, DNA-DNA hybridization analysis, and other chemotaxonomic characteristics, and was named S. viridodiastaticus MS9 (=KCTC29014=DSM42055). In this study, we aimed to investigate the molecular and biochemical characteristics of a xylanase (XynCvir) identified from S. viridodiastaticus MS9. XynCvir (molecular weight ≈ 21 kDa) was purified from a modified Luria-Bertani medium, in which cell growth and xylanase production considerably increased after addition of xylan. Thin layer chromatography of xylan-hydrolysate showed that XynCvir is an endo-(1,4)-β-xylanase that degrades xylan into a series of xylooligosaccharides, ultimately converting it to xylobiose. The Km and Vmax values of XynCvir for beechwood xylan were 1.13 mg/ml and 270.3 U/mg, respectively. Only one protein (GHF93985.1, 242 amino acids) containing an amino acid sequence identical to the amino-terminal sequence of XynCvir was identified in the genome of S. viridodiastaticus. GHF93985.1 with the twin-arginine translocation signal peptide is cleaved between Ala-50 and Ala-51 to form the mature protein (21.1 kDa; 192 amino acids), which has the same amino-terminal sequence (ATTITTNQT) and molecular weight as XynCvir, indicating GHF93985.1 corresponds to XynCvir. Since none of the 100 open reading frames most homologous to GHF93985.1 listed in GenBank have been identified for their biochemical functions, our findings greatly contribute to the understanding of their biochemical characteristics.

Keywords

Acknowledgement

This work was supported by the Research Grant of Seoil University, and the grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202304106).

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang A, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein data base. Nucleic Acids Res. 25: 3389-3402. 
  2. Bajaj BK, Singh NP. 2010. Production of xylanase from an alkali tolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl. Biochem. Biotechnol. 162: 1804-1818. 
  3. Bajaj P, Mahajan R. 2019. Cellulase and xylanase synergism in industrial biotechnology. Appl. Microbiol. Biotechnol. 103: 8711-8724. 
  4. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. 
  5. Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, et al. 2004. Unusual microbial xylanases from insect guts. Appl. Envrion. Microbiol. 70: 3609-3617. 
  6. Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA. 2011. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 51: 178-194. 
  7. Chi WJ, Oh EA, Kim JH, Hong SK. 2011. Enhancement of protein secretion by TatAC overexpression in Streptomyces griseus. Biotechnol. Bioproc. Eng. 16: 59-71. 
  8. Chi WJ, Lim JH, Park DY, Park JS, Hong SK. 2013. Production and characterization of a thermostable endo-type β-xylanase produced by a newly-isolated Streptomyces thermocarboxydus subspecies MW8 strain from Jeju Island, Proc. Biochem. 48: 1736-1743. 
  9. Chun J, Lee JH, Jung YY, Kim MJ, Kim SI, Kim BK, et al. 2007. ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. 
  10. Derewenda U, Swenson L, Green R, Wei Y, Morosoli R, Shareck F, et al. 1994. Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J. Biol. Chem. 269: 20811-20814. 
  11. Faik A. 2010. Xylan biosynthesis: news from the grass. Plant Physiol. 153: 396-402. 
  12. Faury D, Saidane S, Li H, Morosoli R. 2004. Secretion of active xylanase C from Streptomyces lividans is exclusively mediated by the Tat protein export system. Biochim. Biophys Acta 1699: 155-162. 
  13. Fujimoto Z, Kishine N, Teramoto K, Tsutsui S, Kaneko S. 2021. Structure-based substrate specificity analysis of GH11 xylanase from Streptomyces olivaceoviridis E-86. Appl. Microbiol. Biotechnol. 105: 1943-1952. 
  14. Hopwood DA. 2019. Highlights of Streptomyces genetics. Heredity (Edinb). 123: 23-32. 
  15. Hwang IT, Lim HK, Song HY, Cho SJ, Chang JS, Park NJ. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnol. Adv. 28: 594-601. 
  16. Kieser H, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, UK. 
  17. Kluepfel D, Vats-Mehta S, Aumont F, Shareck F, Morosoli R. 1990. Purification and characterization of a new xylanase (xylanase B) produced by Streptomyces lividans 66. Biochem. J. 267: 45-50. 
  18. Komaki H. 2019. Reclassification of 15 Streptomyces species as synonyms of Streptomyces albogriseolus, Streptomyces althioticus, Streptomyces anthocyanicus, Streptomyces calvus, Streptomyces griseoincarnatus, Streptomyces mutabilis, Streptomyces pilosus or Streptomyces rochei. Int. J. Syst. Evol. Microbiol. 71: 004718. 
  19. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  20. Lee CC, Smith M, Kibblewhite-Accinelli RE, Williams TG, Wagschal K, Robertson GH, et al. 2006. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10: 295-300. 
  21. Li H, Faury D, Morosoli R. 2006. Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C from Streptomyces lividans. FEMS Microbiol. Lett. 255: 268-274. 
  22. Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. 
  23. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. 
  24. Mondou F, Shareck F, Morosoli R, Kluepfel D. 1986. Cloning of the xylanase gene of Streptomyces lividans. Gene 49: 323-329. 
  25. Ninawe S, Kapoor M, Kuhad RC. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258. 
  26. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. 
  27. Shareck F, Roy C, Yaguchi M, Morosoli R, Kluepfel D. 1991. Sequences of three genes specifying xylanases in Streptomyces lividans. Gene. 107: 75-82. 
  28. Subramaniyan S, Prema P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7. 
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. 
  30. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. 
  31. Tsevelkhoroloo M, Xiaoqiang L, Jin XM, Shin JH, Lee CR, Kang Y, et al. 2022. LuxR-Type SCO6993 Negatively regulates antibiotic production at the transcriptional stage by binding to promoters of pathway-specific regulatory genes in Streptomyces coelicolor. J. Microbiol. Biotechnol. 32: 1134-1145. 
  32. Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. 2004. Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Artic Ocean, and emended description of the genus Glaciecola. Int. J. Syst. Evol. Microbiol. 54: 1765-1771. 
  33. Wang Q, Xia T. 2008. Importance of C-terminal region for thermostability of GH11 xylanase from Streptomyces lividans. Appl. Biochem. Biotechnol. 144: 273-282. 
  34. Wu L, Ma J. 2019. The global catalogue of microorganisms (GCM) 10K type strain sequencing project: providing services to taxonomists for standard genome sequencing and annotation. Int. J. Syst. Evol. Microbiol. 69: 895-898. 
  35. Wang SL, Yen YH, Shih IL, Chang AC, Chang WT, Wu WC, et al. 2003. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enz. Microb. Technol. 33: 917-925. 
  36. Wong DW. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116. 
  37. Zhu W, Qin L, Xu Y, Lu H, Wu Q, Li W, et al. 2023. Three molecular modification strategies to improve the thermostability of xylanase XynA from Streptomyces rameus L2001. Foods 12: 879. 
  38. Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. Edited in evolving genes and proteins by Bryson V and Vogel HJ, pp. 97-166. Academic Press, New York.