• Title/Summary/Keyword: Strength of concrete

Search Result 11,023, Processing Time 0.038 seconds

Assessment of Flexural Ductility in RC Beams with High-Strength Reinforcement (고장력 철근을 사용한 RC 보의 휨연성 평가)

  • 권순범;윤영수;이만섭;임철현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.897-902
    • /
    • 2001
  • Recently, structure performance is maximized by using high strength concrete. In design of structure, concrete need combination with reinforcement, but use of common strength reinforcement make member complex bar placement, so high strength concrete members require increased strength reinforcement. If common strength reinforcement replaced by equal tension area of high strength reinforcement, reinforcement ratio increase and brittle failure of member may occur by material change. So, adequate upper limit of strength ratio is required to affirm ductile behavior in application of high strength reinforcement. In this study, ductility behavior was analysed by factor of reinforcement ratio, strength of concrete and reinforcement. The result indicate that ductile failure is shown under 0.35 $\rho_{b}$ in any reinforcement strength of same section and high strength concrete of 800kg/$cm^{2}$ used commonly is compatible with reinforcement of 5500kg/$cm^{2}$.

  • PDF

Strength Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 강도 특성)

  • Sung, Chan-Yong;Back, Seung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.25-32
    • /
    • 2005
  • This study was performed to evaluate the strength properties of polymer concrete using recycled aggre-gate. The compressive strength, splitting tensile strength, flexural strength and pulse velocity of polymer concrete were decreased with increasing the content of recycled aggregate. At the curing age of 7days, the compressive strength was $80.5\~88.3$ MPa, the splitting tensile strength was $9.1\~10.6$ MPa, the flexural strength was $19.2\~21.5$ MPa and the pulse velocity was $3,931\~4,041$ m/s, respectively. Also, the compressive strength, splitting tensile strength, flexural strength and pulse velocity of concrete using recycled fine aggregate were higher than that of the silica sand. Therefore, these recycled aggregate polymer concretes were estimated for high strength concrete without major problem.

A study on early strength Evaluating for various kind of Concrete (콘크리트 종류에 따른 마이크로파를 이용한 조기강도 추정에 관한 연구)

  • 원준연;박재한;백민수;이종균;김영회;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1051-1056
    • /
    • 2000
  • There were various study about an early compressive strength of concrete. But, they had a problems-likes accuracy and spending too much necessary time. The purpose of this study is develope method that suitable for each field proportioning. The result of this study are as follows : 1) The standard deviation between flyash added concrete's accelerated strength and it's standard compressive strength is follows, 10% in accelerated strength, 4.5% in 28-days strength, 10% in accelerated strength of S/A changed concrete, 2.3% in 28-days strength. 2) When flyash added into concrete, coefficient of determination between accelerated strength and 7-days strength is 0.63%, 0.89 between accelerated strength and 28-days strength. When S/A is changed, coefficient of determination is 0.77, 0.91.

A Study on the Strength Characteristics of Concrete Cores (콘크리트 코어의 강도특성에 관한 연구)

  • 권영웅;이성용;신정식;전익찬;김민수;박송철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.85-90
    • /
    • 2002
  • This paper concerns the within test strength of concrete cured under different conditions. Those conditions are water curing, field curing and cores drilled from the existing structures. The test factors are not only above cured conditions but also concrete ages of 3, 7, 14 and 28 days and concrete strength of 202, 252 and 650kgf/$\textrm{cm}^2$. The test results are as follows; (1) In spite of within test results, concrete strength is very different from curing states of concrete (2) The strength of cores drilled from existing structures are smaller than the strength of concrete cured in water by 3~4% and larger than that of concrete cured in field by 8~17% (3) Core strength is largely dependant on the curing state of top surface of concrete.

  • PDF

Variation of Concrete Strength according to Vibration Time Control for Fresh Concrete (양생초기의 진동시간 제어에 따른 콘크리트의 강도 변화)

  • 송규황;김종수;김명식;장희석;김희성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.675-678
    • /
    • 2003
  • Experimental results for variation of concrete strength according to vibration time control for fresh concrete were given. Vibration velocity, time before vibration and vibrating time were used as experimental parameters. Compressive strength, split tensile strength, ana bond strength were investigated and then fracture surfaces of split tensile strength specimen were observed. From the experimental results, it could be concluded that there may be no decrease in concrete strengths if time before vibration will be sustained at least for more than 3 hours.

  • PDF

An Experimental Study on Physical Properties of High-Strength Concrete Using Sea Sand (해사를 이용한 고강도 콘크리트의 물성실험 연구)

  • 박종협;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.159-163
    • /
    • 1995
  • The purpose of this experimental research is to not only devlop the high-strength concrete using sea and river sand, but also investigatc mechanical properites of the high-strength concrete, such as the elastic modulus, the compressive strength of concrete cyllinder, and etc. Also, rational analytical formula for elastic modulus has been proposed together with those for the splitting tensile strength and the flexural strength to be predicted from compressive strength of conccrete cyllinder.

  • PDF

Strength Development of Low Heat Portland Cement Concrete in High Strength Range (저열 포틀랜드 시멘트 콘크리트의 고강도 영역에서의 강도발현 특성)

  • Ha Jae Dam;Um Tai Sun;Lee Jong Ryul;Kwon Young Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.353-356
    • /
    • 2005
  • Strength development of low heat portland cement(Type IV) concrete in high strength range is tested. In this study strength development according to water-binder ratio, strength development according to age, effect of fly ash and super plasticizer are tested. This study tests effect of low heat portland cement in high strength range concrete and provide guide line concrete mix design for later study and/or construction.

  • PDF

Study to evaluate the correlation between structural core strength and strength development of standard cured specimens in a summer environment (하절기 환경에서 구조체 코어 강도와 표준양생 공시체 강도의 압축강도 발현 상관성 평가 연구)

  • Jeong, Min-Gu;Kim, Han-Sol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.143-144
    • /
    • 2023
  • The compressive strength of concrete varies depending on various factors. Among them, based on the curing temperature, the KCS 14 20 10 Standard Specification for General Concrete calculates the nominal strength by applying the temperature correction value (Tn) based on the compressive strength of the standard cured concrete at 20±2℃ when designing the formulation strength. However, Tn is a correction value that considers only the temperature, and the correction of strength difference due to heat of hydration is not applied. Therefore, in this study, one-component and two-component concrete are mixed in the summer, structural concrete are manufactured, standard concrete specimen are manufactured, and coring is performed on the central and boundary parts of the structural concrete to calculate the correction value applied to the nominal strength by comparing the compressive strength of standard cured concrete on the 28th day of curing and the compressive strength of structural concrete on the 91st day of curing.

  • PDF

Shear Mechanism of Steel-Fiber Reinforced High Strength Concrete Beams without Shear Reinforcement (전단 보강이 없는 고강도 섬유보강 철근 콘크리트보의 전단 역학적 거동에 관한 연구)

  • 오정근;이광수;권영호;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.51-56
    • /
    • 1990
  • Investigations on the behavior of steel fiber reinforced high strength concrete beams subjected to predominant shear are accomplished to determine their diagonal shear strength including ultimate shear strength. The parameters varied were the volume fraction(Vf) of the fibers, shear span depth ratio(a/d). The test result show that diagonal shear strength and ultimate shear strength are increased siginificantly due to crack arrest mechanism. Predictive equations are suggested for evaluating the diagonal cracking strength and ultimate shear strength of the fiber reinforced high strength concrete beams.

  • PDF

Confined Effect of Ultra High Strength Reinforced Concrete Tied Columns (초고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • Han, Byum Seok;Shin, Sung Woo;Kim, Tae Soo
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.105-111
    • /
    • 2007
  • As this study investigates the influence about type of transverse reinforcement, spacing of transverse reinforcement(s), volumetric ratios of transverse reinforcement(${\rho}s$) of ultra-high strength concrete columns. It try to offer to resonable basic data of the confined model for the ultra-high concrete of in reinforced concrete columns. Experimental tests with large scaled columns were conducted under concentric axial loads. The ultra-high strength concrete (100MPa) was used. From this test result, it evaluate influence of the strength enhancement and ductility enhancement, important variables about behavior of the confined concrete by confinement of ultra-high strength reinforced concrete.There are two ways to improve the confinement effect of high strength concrete columns through the increase of amounts and/or strength of transverse reinforcement.