• Title/Summary/Keyword: Strength of Product

Search Result 1,244, Processing Time 0.028 seconds

Effect of Filler Addition on Properties of Sheets Prepared from Bacterial Cellulose (박테리아 셀룰로오스 시트의 물성에 미치는 충전제의 첨가효과)

  • 조남석;민두식
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.35-41
    • /
    • 1998
  • The bacterial cellulose has many unique properties that are potentially and commercially beneficial. In order to make opaque product from this cellulose, filling properties by fillers should be known. This study was performed to investigate the effect of filler addition on physical properties of sheets from bacterial cellulose. The effect of filling on its optical properties was also discussed. The apparent density and internal bonding strength of bacterial cellulose sheet are decreasing with the increase of filler contents. Those adversely affect Young's modulus and physical property of the sheet, but these negative phenomena of the bacterial cellulose sheet by filler addition are not so sensitive compared to substantial decreasing of physical properties of ordinary hardwood KP. This strength decrease would be attributed to the decrease of relative bonding sites among pulp fibers. Concerned to optical properties, the bacterial cellulose sheet shows high increase of brightness and opacity according to filler loading, but no significant changes in porosity up to 17.3% loading because of fine and filamentous structure of bacterial cellulose fibers.

  • PDF

Process Design of Seat Rail in Automobile by the Advanced High Strength Steel of DP780 (DP780 초고장력 강판을 이용한 자동차용 시트레일의 성형공정 설계)

  • Ko, D.C.;An, J.H.;Jang, M.J.;Bae, J.H.;Kim, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2008
  • The control of springback is very important in sheet metal forming since springback affects the dimensional inaccuracy of product. The object of this study is to design the manufacturing process for the improvement of the performance of seat rail by DP780. The influence of process variables such as bend angle and pad force on the springback has been firstly investigated through the comparison between the results of FE-analysis and trial out for initial design based on designer's experience. The process variables of the initial design have been modified in order to improve the dimensional accuracy of seat rail from the prediction of springback by FE-analysis. It was shown from experiment that the improved design satisfied the required specifications such as the dimensional accuracy and the strength of seat rail.

Design of Repetitive Impact Tester and Mechanical Properties of Plastic Due to Cyclic Impacts (반복 충격장치 설계 및 반복충격에 의한 플라스틱 재료특성 연구)

  • Lee, Joon-Hyun;Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.29-34
    • /
    • 2017
  • Many household appliances, including vacuum cleaners, are being subjected to various of impact damages, and made of plastic. However, researches on the damage of appliances materials by repetitive impacts have been rarely conducted. the mechanical stress exerted upon impact-modified polycarbonate (PC) has a great influence not only on the quality of the product but also on the life span. The purpose of this research was to quantify the effects of repetitive impact on the polycarbonate. Second, it was to design the repetitive impact tester for controlling the impact energy. The mechanical properties of tensile strength, yielding stress and strain on the specimens subjected to cyclic impacts were discussed. Tensile strength was sharply declined at the beginning of the impact cycles, while the strain gradually decreased during impact cycles.

Performance Evaluation of Inter-Locking Block Using Fly Ash

  • Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.143-148
    • /
    • 2004
  • In this paper, the properties of inter - locking block using fly ash are discussed in order to provide economical advantages and improve quality, and protect environment and recycle resources. Fly ash is the by-product of coal in thermal power plant. The experimental parameters are fly ash content, the amount of AE water - reducing agent and mixing proportion of cement mortar. According to the experimental results, the improvement of quality in the side of strength, absorption ratio and freeze - thaw resistance for manufacturing inter -locking block and the curtailment of cost can be achieved in case of 15% of fly ash and 0.3% of AE water- reducing agent are mixed into mortar mixture of 1 :6(C:S).

Aging Analysis of Catenary Wires in Accordance with Temperature Changes for a Long Period of Time (장기간 온도변화에 따른 전차선로 전선류의 노후도 분석)

  • Cho, Nam-Hee;Oh, Wan-Shik;Kim, Jae-moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1590-1596
    • /
    • 2016
  • In this paper, catenary wires were analyzed aging through the experiment about a new product and a test sample in accordance with temperature changes from long-term use. In case of the contact wire, the maximum load was reduced within 7% and the tensile strength showed a reduced within 6.7% compared with a new reference standard $110mm^2$. 19 Strands of messenger wire have a little more than a standard value, but result data on tensile test were less than the reference value about stranded wire. Also parts among 49 strands of dropper was found to be smaller than the reference value and it appeared greatly increasing intensity as toward the center of the strand.

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.

An Experimental Study on the Durability of Concrete using the Bottom Ash as a part of Fine Aggregate (Bottom Ash를 잔 골재 대체재로 사용한 콘크리트의 내구성에 관한 실험적 연구)

  • 최세진;이성일;정용;김양배;오복진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.19-24
    • /
    • 2003
  • Recently, the by-product of coal ash has been increased by increase of consumption of electric power. So in view of environmental aspect, it is important to secure a reclaimed land and treatment utility for coal ash. This is an experimental study to compare and analyze the properties of high volume coal-ash concrete using the bottom ash. For this purpose, the mix proportions of concrete according to the replacement ratio of bottom ash(l0, 20, 35, 50%). And then air content, slump, compressive strength, durability test were performed. According to test results, it was found that the compressive strength of bottom ash concrete was similar to that of plain concrete(BA0). And the carbonation depth of bottom ash concrete increased as the replacement ratio of bottom ash.

  • PDF

Effect of the Mold Temperatures on the Microstructure and Mechanical Properties of Low Pressure Die-Cast Product (저압주조품의 미세조직과 기계적성질에 미치는 금형온도의 영향)

  • Lee, Jeong-Keun;Park, Chong-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.254-261
    • /
    • 1998
  • Microstructure and mechanical properties of the low pressure die-cast Al wheels were investigated by microscope, image analyzer, NDT (non-destructive test), and tensile test. The variation of SDAS (secondary dendrite arm spacing), porosity per unit area, quality grade, and tensile properties with the mold temperatures were examined. SDAS was gradually decreased with a decrease in temperature. However, the lowest value of porosity per unit area was observed at the mold temperature of $405^{\circ}C$ and the optimum mold temperature was found to be $405^{\circ}C$. Besides, from the observation of pore morphology, it was also found that the pore formation was mainly caused by shrinkage during solidification. The tensile strength, elongation, and impact toughness were markedly decreased, however the yield strength was nearly constant. The decrease of mechanical properties is attributed to the increase of porosity.

  • PDF

Basic characteristic of non-sintered binder using by CFBC ash (순환유동층 보일러애시를 활용한 비소성 결합재 기초 특성)

  • Kang, Yong-Hak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.225-226
    • /
    • 2017
  • Recently, there has been a growing interest in the development of non-sintered binder to reduce CO2 emissions from the cement clinker manufacturing process and a number of studies have been conducted on fly ashes as an industrial by-product. However, in order to utilize fly ashes as a non-sintered binder, it is necessary to solve problems such as safety issues and economical efficiency due to use of an alkali activator. This study evaluates the material properties and compressive strength characteristics of three types of circulating fluidized bed boiler ashes. As a result, it was confirmed that the characteristics of each binder vary depending on the location of the power plant and the types of raw materials. In addition, it has been confirmed that the fluidized bed boiler ash shows a high compressive strength and can be used sufficiently as an non-sintered binder.

  • PDF

Evaluation of the Changes in Local Paper Structure and Paper Properties Depending on the Forming Elements Types (탈수소자에 의한 종이 미세구조 및 물성 변화 평가)

  • Sung, Yong-Joo;Keller, D. Steven
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The influence of different forming elements on the local paper structure and the related paper properties was investigated in this study. Specifically, a conventional papermaking foil system and a velocity induced drainage (VID) system were compared. The study involved the analysis of the product samples obtained from the commercial machine trials. The paper samples produced with VID forming systems showed better formation. The deterministic patter in the local structural profile map of the Foil samples indicated the structure of foil samples was more supple after forming process and then easier to be marked by various fabrics such as wet pressing fabric. The higher bulk was observed in the VID samples, which resulted in higher scattering coefficient, lower ZDT strength, and higher bending stiffness.