• 제목/요약/키워드: Strength design method

검색결과 2,593건 처리시간 0.025초

하이포이드 기어의 체적 최소화 최적 설계 (An Optimum Design Method of Hypoid Gear by Minimizing Volume)

  • 이기훈;이근호;배인호;정태형
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.55-61
    • /
    • 2007
  • The hypoid gear has advantage for the high reduction ratio and compactness. But, geometry design and strength evaluation of the hypoid gear depend on the machine tool of specific production companies because the geometry design and strength evaluation of the hypoid gear are complex and difficult. This paper proposes the development of the design programs to satisfying the geometry and strength of a hypoid gear through optimization technique using the genetic algorithm. The genetic algorithm is designed to optimize a method for minimizing volume. The existing design of hypoid gear in the forklift truck axle is compared with the results of developed optimum design program.

정강도를 고려한 상부 컨트롤 암의 구조설계 (Structural Design of an Upper Control Arm, Considering Static Strength)

  • 송병철;박한석;권영민;김성환;박영철;이권희
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.190-196
    • /
    • 2009
  • This study proposes a structural design method for the upper control arm installed at the rear side of a SUV. The weight of control arm can be reduced by applying the design and material technologies. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. Strength assessment is the most important design criterion in the structural design of a control arm. At the proto design stage of a new control arm, FE (finite element) analysis is often utilized to predict its strength. This study considers the static strength in the optimization process. The inertia relief method for FE analysis is utilized to simulate the static loading conditions. According to the classification of structural optimization, the structural design of a control arm is included in the category of shape optimization. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by ANSYS WORKBENCH and the in-house program, EXCEL-kriging program. The optimum results determined from the in-house program are compared with those of ANSYS WORKBENCH.

Kirchhoff 근사 방법을 이용한 축소모델의 표적강도 예측 (Target Strength Prediction of Scaled Model by the Kirchhoff Approximation Method)

  • 김영현;주원호;김재수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.442-445
    • /
    • 2004
  • The acoustic target strength (TS) of submarine is associated with its active detection, positioning and classification. That is, the survivability of submarine depends on its target strength. So it should be managed with all possible means. An anechoic coating to existing submarine or changing of curvature can be considered as major measures to reduce the TS of submarine. It is mainly based on the prediction of its TS. Under this circumstances, a study on the more accurate numerical methods becomes big topic for submarine design. In this paper, Kirchhoff approximation method was adopted as a numerical tool for the physical optics region. Secondly, the scaled models of submarine were built and tested in order to verify its performance. Through the comparison, it was found out that the Kirchhoff approximation method could be good design tool for the prediction of TS of submarine.

  • PDF

Shear strength of reinforced concrete dapped-end beams

  • Lin, Ing-Jaung;Hwang, Shyh-Jiann;Lu, Wen-Yao;Tsai, Jiunn-Tyng
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.275-294
    • /
    • 2003
  • In this study, 24 high-strength concrete dapped-end beams were tested to study the effects of the amount of main dapped-end reinforcement, the nominal shear span-to-depth ratio, and the concrete strength on the shear strength of dapped-end beams. Test results indicate that the shear strength of dapped ends increases with the increase in the amount of main dapped-end reinforcement and the concrete strength. The shear strength of dapped-end beam increases with the decrease of nominal shear span-to-depth ratio. A simplified method for determining the shear strength of reinforced concrete dapped ends is also proposed in this paper. The shear strengths predicted by the proposed method and the approach of PCI Design Handbook are compared with test results. The comparison shows that the proposed method can more accurately predict the shear strength of reinforced concrete dapped-end beams than the approach of PCI Design Handbook.

Development of optimum design curves for reinforced concrete beams based on the INBR9

  • Habibi, Alireza;Ghawami, Fouad;Shahidzadeh, Mohammad S.
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.983-998
    • /
    • 2016
  • Structural optimization is one of the most important topics in structural engineering and has a wide range of applicability. Therefore, the main objective of the present study is to apply the Lagrange Multiplier Method (LMM) for minimum cost design of singly and doubly reinforced rectangular concrete beams. Concrete and steel material costs are used as objective cost function to be minimized in this study, and ultimate flexural strength of the beam is considered to be as the main constraint. The ultimate limit state method with partial material strength factors and equivalent concrete stress block is used to derive general relations for flexural strength of RC beam and empirical coefficients are taken from topic 9 of the Iranian National Building Regulation (INBR9). Optimum designs are obtained by using the LMM and are presented in closed form solutions. Graphical representation of solutions are presented and it is shown that proposed design curves can be used for minimum cost design of the beams without prior knowledge of optimization and without the need for iterative trials. The applicability of the proposed relations and curves are demonstrated through two real life examples of SRB and DRB design situations and it is shown that the minimum cost design is actually reached using proposed method.

해상교량의 설계선박 선정 (Design Vessel Selection of Maritime Bridges)

  • 이병화;배용귀;이성로;이계희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.607-615
    • /
    • 2005
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of the bridge. Method I in AASHTO LRFD bridge design specifications is a semi-deterministic analysis procedure for determining the design vessel. Method ll which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. The AF allocation by weights seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

  • PDF

균일 강도 핫스템핑 부품의 제조를 위한 냉각채널 최적 설계 및 V-벤딩 공정에의 적용 (Optimal Design Method of the Cooling Channel for Manufacturing the Hot Stamped Component with Uniform Strength and Application to V-bending Process)

  • 임우승;최홍석;남기주;김병민
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.63-72
    • /
    • 2011
  • In recent years, hot-stamped components are more increasingly used in the automotive industry in order to reduce weight and to improve the strength of vehicles. In hot stamping process, blank is hot formed and press hardened in a tool. However, in hot stamping without cooling channel, temperature of the tool increases gradually in mass production thus cannot meet the critical cooling rate to obtain high strength over 1500MPa. Warpage occurs in the hot stamped component due to non-uniform stress state caused by unbalanced cooling. Therefore, tools should be uniformly as well as rapidly cooled down by the coolant which flows through cooling channel. In this paper, optimal design method of cooling channel to obtain uniform and high strength of the component is proposed. Optimized cooling channel is applied to the hot press V-bending process. As a result of measuring strength, hardness and microstructure of the hot formed parts, it is known that the design methodology of cooling channel is effective to the hot stamping process.

내구기준을 고려한 컨트롤 암의 구조최적설계 (Structural Optimization of a Control Arm with Consideration of Durability Criteria)

  • 김종규;박영철;김영준;이권희
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1225-1232
    • /
    • 2009
  • This study suggests a structural design process for the upper control arm installed at a vehicle. Static strength and durability are the most important responses in the structural design of a control arm. This study considers the static strength in the optimization process. The inertia relief method for FE analysis is utilized to simulate the static loading conditions. According to the classification of structural optimization, the structural design of a control arm is included in the category of shape optimization. In this study, the metamodel technique using the kriging method is adopted to obtain the minimum weight satisfying the strength constraint. Then, the final design is suggested by considering the durability criteria. The durability assessment is obtained by the index of fatigue durability called the SWT (Smith-Watson-Topper) index. The final optimum shape has been proposed by trial and error method.

용접형강의 직접강도법 개발에 관한 연구 고찰 (The Development of the Direct Strength Method for Welded Steel Members)

  • 류승완;박성웅;권영봉
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.231-241
    • /
    • 2015
  • 직접강도법은 NAS(2004)와 AS/NZS 4600(2005)에 의해서 냉간성형강재의 설계에 처음 채택되었다. 이 설계법은 용접형강 부재에도 효과적으로 적용이 가능하다고 판단된다. 본 논문에서는 최근 수행된 용접형강 부재의 직접강도법 개발에 대해서 살펴보고자 한다. 용접형강 압축 및 휨부재의 설계강도식은 H, C, RHS, CHS 형강, 플레이트거더 및 보강판 단면의 실험 결과에 근거하여 개발 되었다. 직접강도법과 현행 설계기준에 의해 예측된 강도의 비교 결과를 통하여 직접강도법을 적용하여 좌굴혼합이 발생하는 용접형강 기둥 및 보 부재의 압축, 휨 및 전단강도를 합리적으로 산정할 수 있는 것을 입증하였다.

온성방법과 단면형태가 수종의 의치상 수리레진의 결합강도에 미치는 영향 (THE EFFECT OF PROCESSING METHOD AND SURFACE DESIGN ON THE TRANSVERSE STRENGTH OF REPAIRED DENTURE BASE RESIN)

  • 김강남;배태성;한중석
    • 대한치과보철학회지
    • /
    • 제34권4호
    • /
    • pp.665-674
    • /
    • 1996
  • This study was designed to evaluate the effect of processing method and surface design on the transverse strength of repaired denture base resin. Three heat-cured denture base resins(Vertex, Lucitone, Lang), one cold-cured resin(Lang), and one light-cured resin(Dentacolor gingiva material) were used for repair purpose. The specimens for 3-point flexure test were fabricated by five processing methods such as self-curing, pressure pot, boiling water, processing, and light curing. Finally to evaluate the effect of surface designs for repaired resin, three surface designs(butt, bevel, inverse bevel) were tested. Within the limit of this study, following conclusions were drawn. 1. Lucitone denture base material showed highest flexural strength of $131.37{\pm}2.15MPa$, and there were significant differences in stength between Lucitone and other resins. 2. Between two different self curing methods, self curing repair resin, Lang, cured by pressure pot method showed highest flexural strength, $58.49{\pm}4.89MPa$. 3. Among the heat cured repair resins, maximum transverse strength value of $88.69{\pm}16.60MPa$ was recorded in Lucitone group cured by processing method. 4. Inverse bevel joint design showed significantly higher bond strength than butt joint group, Maximum bond strength was $59.36{\pm}1.33MPa$ in inverse bevel joint design group.

  • PDF