• 제목/요약/키워드: Strength decrease

검색결과 2,827건 처리시간 0.031초

핑거접합부의 수량 및 배치가 생태목조건축용 집성재의 휨강도에 미치는 영향 (The Effects of Number and Location of Finger Joints on the Bending Strength of Glue Laminated Wood for Green Wood Building)

  • 소원택
    • 한국가구학회지
    • /
    • 제18권1호
    • /
    • pp.20-30
    • /
    • 2007
  • This experiment was carried out to investigate the effects of number and location of finger joints on the bending strength of glue-laminated lumbers. Urea resin adhesives were used in this experiment and the resin content was 70% for cold pressing. The lamina were edge-jointed and end-jointed. The specimen were composed of one or three layers. The obtained results are summarized as follows; The effects of finger joints on the decrease of bending strength of glue laminated woods were different according to the number and location of finger joints. The decrease of MOR was highest on the middle position of laminated woods. The effects of several arrangements of finger joints on the bending strength of glue laminated woods showed on Figure 7 and 8. The variance of thickness-laminating on the bending strength of glue laminated woods were larger than those of width-laminating.

  • PDF

압연강판 접착제 접합부의 환경 접합강도에 미치는 온도 및 침수시간의 영향 (Effect of Temperature and Immersion Time on the Environmental Adhesive Strength of Adhesively Bonded Joints of Rolled Steel Sheet)

  • 송준희;이희제;임재규
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2662-2669
    • /
    • 2002
  • Recently structural applications of adhesive bonding method have been increased extensively in automobile industry. Adhesively-bonded joints which are used in automobile field are exposed to various environmental conditions. In this study, several environmental factors were concerned to evaluate their effects on the adhesive strength such as air temperature, water temperature, exposed time in water. The specimens are exposed for 1, 10 and 100 hours at various air temperatures to evaluate the effects of the air and water temperature on the adhesive strength. It is proved that the adhesive strength decrease with rising the air and water temperature, and the adhesive strength decrease steeply at the higher temperature with increasing the exposure time in water.

LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과 (Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank)

  • 김정규;김철수;조동혁;김도식;윤인수
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.

시멘트 유지형 임플란트 지대주의 높이와 축면경사도가 보철물의 유지력에 미치는 영향 (Effect of different abutment height and convergence taper on the retention of crowns cemented onto implant-supported prostheses)

  • 변태희;김부섭;정인성
    • 대한치과기공학회지
    • /
    • 제30권1호
    • /
    • pp.57-63
    • /
    • 2008
  • The purpose of this study was to ascertain the effect of different abutment height and different taper of abutment on retention force of cemented implant-supported prostheses. Test specimens consisted of different abutment height group(3mm, 4mm, 5mm, 6mm, 7mm) and different taper(degrees) abutment group($4^{\circ},\;5^{\circ},\;6^{\circ},\;7^{\circ},\;8^{\circ}$). The surfaces of abutments and crowns were manufactured and finished by automatic lathe(CNC). Luting cement(Tokuso Ionomer) was prepared according to the manufacturer's instruction. And the cylinders were sealed onto the abutments and loaded in compression at 5kg for 10minutes. Excess cement was removed from the abutment-cylinder junction and the specimens were stored at room temparature for 24 hours. Specimens were tested in tension using a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The increase in abutment height result in improvement in retention strength(P<0.05). 2. The increase in taper of abutment result in decrease in retention strength(P<0.05). 3. The decrease in abutment height result in decrease in retention strength, besides has a significantly lower retention strength at 3mm abutment height. 4. The increase in taper of abutment result in decrease in retention strength, besides has a significantly lower retention strength at $7^{\circ}$ abutment.

  • PDF

글씨쓰기 훈련과 근력 훈련이 비우세손 기능과 근력에 미치는 영향 (Effects of the Handwriting Training and the Muscle Strength Training on the Function and Muscle Strength of Non-Dominant Hand)

  • 김명진;유영민;이향진;이혜진;장철
    • 대한통합의학회지
    • /
    • 제1권2호
    • /
    • pp.23-35
    • /
    • 2013
  • Purpose : We intend to make the study date for an effect of therapy by comparing the functional level both before and after conducting handwriting training and strength training as a part of treatment to improve muscle strength and function of the patient's non-dominant hand. Method : 8 subjects in writing training group conducted hand writing training 30 minutes at once and three times a week for 4 weeks in total 12 times, and 8 subjects in muscle training group conducted muscle training program of putty and Rolyan ergonomic hand exerciser for 15 minutes respectively in sum up 30 minutes at once and three times a week for 4 weeks in total 12 times. 8 subjects in control group are not applied any training for 4 weeks. Results : It was much more effective in handwriting training than muscle strength training by Grooved pegboard because this study showed the speed decrease from 67.11 to 58.26 seconds in handwriting compared with muscle strength training which showed 5.22 seconds decrease from 67.54 to 62.32(P<.05). It showed about 1.34 muscle strength improvement from 6.60 to 7.94 in handwriting training and 0.92 improvement of muscle strength from 7.04 to 7.96 in muscle strength training by 3-jaw chuck pinch, so handwriting training was more effective(P<.05). It showed 11.58 seconds decrease in handwriting training from 26.62 to 18.01 seconds and 10.93 seconds decrease from 27.43 to 16.50 seconds in muscle strength training, so it was significantly shortened both in handwriting and muscle strength training(P<.05). Conclusion : Dexterity, muscle strength, and handwriting ability of non-dominant hand could improve both the handwriting training and the muscle strength training.

Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement

  • Kean Thai Chhun;Chan-Young Yune
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.261-269
    • /
    • 2023
  • In this study, the compressive strength of cement stabilized soil was predicted using the electrical resistivity measurement. The effects of the water to cement (w/c) ratio and recovered Carbon Black (rCB) contents were examined. A series of electrical resistivity and compressive strength tests were conducted on two types of stabilized soil after 28 days of curing. Multiple nonlinear regression (MNLR) analysis was used to evaluate the relationship between the compressive strength and the electrical resistivity in terms of the rCB, Cu (uniformity coefficient), and w/c ratio. The results showed that the w/c ratio and Cu have a strong influence on the compressive strength and electrical resistivity of the cement stabilized soil compared to the rCB content. The use of a small amount of rCB led to a decrease in the void space in the specimen and was attributed to the increase strength and decrease electrical resistivity. A high w/c ratio also induced a low electrical resistivity and compressive strength, whereas 3% rCB in the cemented soil provided the optimum strength for all w/c ratios. Finally, a prediction equation for the compressive strength using the electrical resistivity measurement was suggested based on its reliability, time effectiveness, non-destructiveness, and cost-effectiveness.

내부소섬유화가 종이 물성에 미치는 영향 (Effect of Internal Fibrillation on the Paper Properties)

  • 원종명
    • 펄프종이기술
    • /
    • 제35권1호
    • /
    • pp.1-6
    • /
    • 2003
  • This study was carried out to investigate the effect of internal fibrillation on the pulp and paper properties. The internal fibrillation was introduced into the SwBKP and recycled SwBKP by the mechanical treatment with Hobart mixer. WRV and physical properties of SwBKP were improved by the internal fibrillation. However the mechanical treatment of recycled SwBKP resulted in the decrease of strength properties of paper except for the tear index, although it was observed that WRV was somewhat increased by the mechanical treatment. The decrease of strength properties of recycled SwBKP might be caused by the hornification of fiber and the decrease of fiber strength.

황산의 침해를 받은 슬래그 경화체의 특성 (The Acid-Resistance Properties of Hardened Alkali-Activated Slag Composites)

  • 김원기;소정섭;배동인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.313-317
    • /
    • 2003
  • The study is the results of accelerated tests and the specimens, mortars, are submerged in a 5% sulfuric acid solution. The deterioration of specimens is followed up by investigating the change in weight and compressive strength of the specimens and techniques such as XRD and XRF are used to examine the chemical changes. Sulfuric acid is a very aggressive acid that reacts with the free lime [$Ca(OH)_2$] in the concrete forming gypsum($CaSO_{4}.2H_{2}O$). This reaction is associated with an increase in volume of the concrete, and the corroded surface becomes soft and white. The results showed that the OPC mortar caused an decrease in weight above 18% and strength loss about 57%. On the other hand, AASC(alkali-activated slag composites) did not cause any decrease in weight and in the case of strength caused an decrease below 10%. In addition, this mechanical results was verified to XRD and XRF.

  • PDF

Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes

  • Abdallah, Reham M.
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권3호
    • /
    • pp.167-171
    • /
    • 2016
  • PURPOSE. This study inspects the effect of incorporating halloysite nanotubes (HNTs) into polymethyl methacrylate (PMMA) resin on its flexural strength, hardness, and Young's modulus. MATERIALS AND METHODS. Four groups of acrylic resin powder were prepared. One group without HNTs was used as a control group and the other three groups contained 0.3, 0.6 and 0.9 wt% HNTs. For each one, flexural strength, Young's modulus and hardness values were measured. One-way ANOVA and Tukey's test were used for comparison (P<.05). RESULTS. At lower concentration (0.3 wt%) of HNT, there was a significant increase of hardness values but no significant increase in both flexural strength and Young's modulus values of PMMA resin. In contrast, at higher concentration (0.6 and 0.9 wt%), there was a significant decrease in hardness values but no significant decrease in flexural strength and Young's modulus values compared to those of the control group. CONCLUSION. Addition of lower concentration of halloysite nanotubes to denture base materials could improve some of their mechanical properties. Improving the mechanical properties of acrylic resin base material could increase the patient satisfaction.

슬래그모래를 사용한 모르터의 압축강도특성 비교에 관한 실험적 연구 (A Experimental Study on the Comparison of the Compression Strength Characteristics of Mortar using the Blast-Furnace Slag Sand)

  • 김종락;김성식;이복만;임남기;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.40-45
    • /
    • 1999
  • This experimental study presents the strength properties of mortar using the blast-furnace slag sand. The mix disign of this study is based on the each three classes of unit water; (250, 275, 300)kg/㎥ and four classes of W/C; (45, 50, 55, 60)% and substitution rate(0, 25, 50, 75, 100)%. It gives following result. As W/C ratio increase, the strength is decrease. In case of mortar using air-cooled blast-furnace slag sand, the 3-days and 7-days compression strength is increase as substitution rate is higher. But in case of the mortar using the quenched blast-furnace slag sand, the compression strength is decrease as substitution rate is higher.

  • PDF