• Title/Summary/Keyword: Strength criteria

Search Result 977, Processing Time 0.027 seconds

Optimal Design of Geodtic Network (측지망의 최적화 설계에 관한 연구)

  • Yun, Hong-Sic;Cho, Jae-Myoung;Cho, Hyun-Joon;Sung, Woo-Jin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.151-155
    • /
    • 2010
  • This paper describe the optimal design of geodetic network by analytical technique based on the quality criteria of network. We described an example of geodetic network design taking into account the precision, reliability and strength that are the main criteria of network design. The main goal of this paper is to evaluate the criteria to design the geodetic network coinciding with the criteria of geometrical strength and high reliability. From this study, the result shows relatively weaker strength in marginal part than the center of network. This indicated that the precision of observation in marginal part is relatively lower than the center.

  • PDF

Investigating the effects of confining pressure on graphite material failure modes and strength criteria

  • Yi, Yanan;Liu, Guangyan;Xing, Tongzhen;Lin, Guang;Sun, Libin;Shi, Li;Ma, Shaopeng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1571-1578
    • /
    • 2020
  • As a critical material in very/high-temperature gas-cooled reactors, graphite material directly affects the safety of the reactor core structures. Owing to the complex structures of graphite material in reactors, the material typically undergoes complex stress states. It is, therefore, necessary to study its mechanical properties, failure modes, and strength criteria under complex stress states so as to provide guidance for the core structure design. In this study, compressive failure tests were performed for graphite material under the condition of different confining pressures, and the effects of confining pressure on the triaxial compressive strength and Young's modulus of graphite material were studied. More specifically, graphite material based on the fracture surfaces and fracture angles, the graphite specimens were found to exhibit four types of failure modes, i.e., tension failure, shear-tension failure, tension-shear failure and shear failure, with increasing confining pressure. In addition, the Mohr strength envelope of the graphite material was obtained, and different strength criteria were compared. It showed that the parabolic Mohr-Coulomb criterion is more suitable for the strength evaluation for the graphite material.

A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings

  • Li, Gang;Lu, Haiyan;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.19-35
    • /
    • 2010
  • This paper proposes a hybrid heuristic and criteria-based method of optimum design which combines the advantages of both the iterated simulated annealing (SA) algorithm and the rigorously derived optimality criteria (OC) for structural optimum design of reinforced concrete (RC) buildings under multi-load cases based on the current Chinese design codes. The entire optimum design procedure is divided into two parts: strength optimum design and stiffness optimum design. A modified SA with the strategy of adaptive feasible region is proposed to perform the discrete optimization of RC frame structures under the strength constraints. The optimum stiffness design is conducted using OC method with the optimum results of strength optimum design as the lower bounds of member size. The proposed method is integrated into the commercial software packages for building structural design, SATWE, and for finite element analysis, ANSYS, for practical applications. Finally, two practical frame-shear-wall structures (15-story and 30-story) are optimized to illustrate the effectiveness and practicality of the proposed optimum design method.

Optimal failure criteria to improve Lubliner's model for concrete under triaxial compression

  • Lei, Bo;Qi, Taiyue;Wang, Rui;Liang, Xiao
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.585-603
    • /
    • 2021
  • The validation based on the experimental data demonstrates that the concrete strength under triaxial compression (TC) is overestimated by Lubliner-Oller strength criterion (SC) but underestimated by Lubliner-Lee SC in ABAQUS. Moreover, the discontinuous derivatives of failure criterion exists near the unexpected breakpoints. Both resulted from the piecewise linear meridians of the original Lubliner SC with constants γ. Following the screen for the available failure criteria to determine the model parameter γ of Lubliner SC, Menétrey-Willam SC (MWSC) is considered the most promising option with a reasonable aspect ratio Kc but no other strength values required and only two new model parameters introduced. The failure surface of the new Lubliner SC based on MWSC (Lubliner-MWSC) is smooth and has no breakpoints along the hydrostatic pressure (HP) axis. Finally, predicted results of Lubliner-MWSC are compared with other concrete failure criteria and experimental data. It turns out that the Lubliner-MWSC can represent the concrete failure behavior, and MWSC is the optimal choice to improve the applicability of the concrete damaged plasticity model (CDPM) under TC in ABAQUS.

Numerical Bayesian updating of prior distributions for concrete strength properties considering conformity control

  • Caspeele, Robby;Taerwe, Luc
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.85-102
    • /
    • 2013
  • Prior concrete strength distributions can be updated by using direct information from test results as well as by taking into account indirect information due to conformity control. Due to the filtering effect of conformity control, the distribution of the material property in the accepted inspected lots will have lower fraction defectives in comparison to the distribution of the entire production (before or without inspection). A methodology is presented to quantify this influence in a Bayesian framework based on prior knowledge with respect to the hyperparameters of concrete strength distributions. An algorithm is presented in order to update prior distributions through numerical integration, taking into account the operating characteristic of the applied conformity criteria, calculated based on Monte Carlo simulations. Different examples are given to derive suitable hyperparameters for incoming strength distributions of concrete offered for conformity assessment, using updated available prior information, maximum-likelihood estimators or a bootstrap procedure. Furthermore, the updating procedure based on direct as well as indirect information obtained by conformity assessment is illustrated and used to quantify the filtering effect of conformity criteria on concrete strength distributions in case of a specific set of conformity criteria.

Strength Assessment of LNG CCS using Strength Analysis Method for Composite Materials (직교이방성 복합재료의 극저온 재료 물성치를 고려한 LNG CCS의 강도 평가에 관한 연구)

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • Liquefied natural gas(LNG) cargo containment system(CCS) has the primary function of ensuring both adequate structural safety with respect to sloshing load which is defined as a violent behaviour of the liquid contents in CCS due to external forced motions and thermal insulation keeping natural gas below its boiling point. Among different LNG CCS types such as independent B-type and membrane ones, Mark III CCS is considered in this paper to perform its strength assessment. Mark III CCS plate is designed and constructed by stacking various non-metallic engineering materials such as plywood, triplex, reinforced PU foam that are supported by series of mastic upon inner steel hull structure. From the viewpoint of structural analysis, this plated structure is treated as a laminated composite structure showing complex structural behaviour under external load. Advanced finite element models of Mark III CCS plate is generated and used in conjunction with ultimate strength based failure criteria from laminated composite mechanics for the strength assessment. The strength assessment is performed within the initial failure state of Mark III CCS plate. Results provide failure details such as failure locations and loads. Finally obtained results are reviewed using the loads from acceptance criteria suggested by classification.

Quality, Setting and Hardening Properties of Rapid Set Accelerators (숏크리트용 급결제의 품질, 응결 및 경화특성)

  • 김진철;류종현;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.323-328
    • /
    • 2002
  • Rapid set accelerators are widely used in tunnel construction, however quality criteria of and dosage are not well established. The density and solid content of admixtures, setting time and compressive strength of paste and mortar with admixtures were investigated to establish the quality criteria. While the early strength of mortar with sodium-silicate, sodium-aluminate and calcium aluminate type admixtures that have high alkali content are very high, but long-term strength are low. Aggregates of shotcrete has to be carefully selected. Sodium-silicate type admixture need longer setting time than the others.

  • PDF

A fracture criterion for high-strength steel cracked bars

  • Toribio, J.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.209-221
    • /
    • 2002
  • In this paper a fracture criterion is proposed for cracked cylindrical samples of high-strength prestressing steels of different yield strength. The surface crack is assumed to be semi-elliptical, a geometry very adequate to model sharp defects produced by any subcritical mechanism of cracking: mechanical fatigue, stress-corrosion cracking, hydrogen embrittlement or corrosion fatigue. Two fracture criteria with different meanings are considered: a global (energetic) criterion based on the energy release rate G, and a local (stress) criterion based on the stress intensity factor $K_I$. The advantages and disadvantages of both criteria for engineering design are discussed in this paper on the basis of many experimental results of fracture tests on cracked wires of high-strength prestressing steels of different yield strength and with different degrees of strength anisotropy.

New Concept in Evaluation of Laser Tailored Blank weldability (새로운 개념의 Tailored Blank 레이저 용접성 경가 방법에 관한 연구)

  • 정봉근;고광문;정경훈;이창희
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • This study introduces the new concept in the evaluation criteria of the $CO_2$ laser Tailored Blank weldability, The materials used are 0.7mm, 1.5mm thick low carbon automotive galvanized steels. Welding tests were conducted for both similar thickness(0.7mm-0.7mm, 1.5mm-1.5mm) and dissimilar thickness(0.7mm-1.5mm) cases. The criteria developed for optimum welding conditions were based on relationship between results of die press forming test, weld transverse tensile test Erichsen test and weld penetration measurements. Application of the developed criteria(fracture ratio, strength ratio and D/To) in obtaining optimum welding condition revealed that a weld which satisfied any of the criteria did not fracture during actual die press test.

  • PDF

The Buckling Behavior of High-strength Steel Truss Columns with Box Section (박스단면 고강도 트러스 기둥재의 좌굴거동)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.79-86
    • /
    • 2007
  • Recently, as steel structures become higher and more long-spanned, construction of high-strength steels is increasing gradually. Application of high-strength steel can be possible to make a more light and economic steel structures by reducing thickness and space. To apply a high-strength steel to structure, criteria of high-strength steel for buckling is required. However, current specification is not sufficient for criteria of high-strength steels. In this paper, buckling behavior of high-strength steel truss columns with box sections is investigated by using three-dimensional elastic-plastic finite deformation analysis program. The criteria equation for allowable compressive stress of high-strength steel truss columns with box sections is proposed and confirmed the applicability. It is reasonable form analytical results that formulated equations after finding the upper limit of allowable axial direction compression stresses of high-strength steel truss columns. And new equation is suitable to buckling design of high-strength steel truss columns.

  • PDF