• Title/Summary/Keyword: Strength Coefficient

Search Result 1,831, Processing Time 0.023 seconds

Analysis on Changes in Strength, Chloride Diffusion, and Passed Charges in Normal Concrete Considering Ages and Mix Proportions (재령 및 배합특성을 고려한 보통 콘크리트의 강도, 염화물 확산계수, 통과전하량 변화 분석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Concrete behavior in early-age is changing due to hydration reaction with time, and a resistance to chloride attack and strength development are different characterized. In the present work, changing strength and resistance to chloride attack are evaluated with ages from 28 days to 6 months. For the purpose, strength, diffusion coefficient, and passed charge are evaluated for normal concrete with 3 different mix proportions considering 28-day and 6-month curing conditions. With increasing concrete age, the changing ratio of strength falls on the level of 135.3~138.3%, while diffusion coefficient and passed charge shows 41.8%~51.1% and 53.6%~70.0%, respectively. The results of chloride diffusion coefficient and passed charge show relatively similar changing ratios since they are much dependent on the chloride migration velocity in electrical field. The changing ratios in chloride behaviors are evaluated to be much larger than those in compressive strength since the ion transport mechanism is proportional to not porosity but square of porosity.

Chloride Ion Penetration Properties of Normal Strength High-Fluidity Concrete Using Lime Stone Powder (석회석 미분말을 활용한 보통강도 고유동 콘크리트의 염소이온 침투특성)

  • Choi, Yun-Wang;Moon, Jae-Heum;Eom, Joo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.160-168
    • /
    • 2010
  • Recently, there are a lot of researches related to the high-fluidity concrete (HFC) with field applications. However, most applications and studies are with concretes with high strength level so there are little studies about durability evaluations such as chloride ion penetration properties with normal strength concrete. Therefore, to evaluate the durability of HFC with normal strength level, this study performed the chloride ion penetration test and observed the micro pore distribution with normal strength HFC which contains limestone powder. Experimental results showed that most micro-pores have diameters between 0.005 to 0.05 ${\mu}m$ with HFCs using limestone powder and the average diameter becomes larger with the increase of limestone powder content. Also, it was shown that, with the increase of the limestone powder content, penetration depth and diffusion coefficient of chloride ion increased and diffusion coefficient had good relationships with compressive strength and average pore diameter with the coefficient of determination over 0.90.

Comparison of Correlation between Chloride Diffusion and Pores Characteristics in Concrete Cured under Extreme Condition (가혹 조건에서 양생된 콘크리트의 염화물 확산과 공극 특성의 상관관계 비교 )

  • So Yeong Choi;Seong Joon Yang;Il Sun Kim;Eun Ik Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.54-61
    • /
    • 2023
  • In this paper, the compressive strength, pore characteristics, and chloride diffusion coefficient were measured at 28 days of age in order to examine the influence of curing conditions for the chloride diffusion and pores in concrete cured under extreme condition. According to the test results, the compressive strength was improved as the relative humidity increased. Additionally, higher compressive strength was observed when the specimens were cured at 35℃. However, the compressive strength of specimens cured at 45℃ was decreased. Meanwhile, the chloride diffusion coefficient decreased with an increase in curing temperature and relative humidity, indicating a difference compared to the trend observed for compressive strength. On the other hand, the excellent correlation showed between compressive strength and chloride diffusion coefficient, porosity and chloride diffusion coefficient when the concrete cured under water. However, when the concrete cured under extreme condition, this correlation was significantly reduced compared to the water curing case. In contrast, it has been determined that there is no significant correlation between the average pore size and chloride diffusion coefficient, regardless of the curing conditions.

The Bending and Compression Strength Properties in Rhus verniciflua(I) (한국산 옻나무의 휨 및 종압축 강도적 성질(I))

  • Byeon, Hee-Seop;Shimada, Masahiro;Fushitani, Masami
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.95-99
    • /
    • 1996
  • The bending and compression strength properties of two types Rhus verniciflua specimens, which made of no heat-treated wood and heat-treated wood for urushiol extraction, were measured. The heat-treated specimens were finger-jointed with either resorcinol-phenol or polyurethane resin adhesives, and the vertical type bending strength property was also measured in these specimens. The results obtained are as follows ; 1. The correlation coefficient between the compression strength and specific gravity in the specimens of no heat-treated and heat-treated wood was high. However there was no difference in compression strength property as affected by heat treatment. 2 The correlation coefficient between the bending strength and specific gravity in the specimens of no heat-treated and heat-treated wood was also high. However, there was no difference in bending strength property as affected by heat treatment. 3 The bending test showed high correlation between modulus of elasticity and modulus of rupture for the specimens made of no heat-treated and heat-treated wood. However, there was no difference in bending strength property between the specimens made of heat-treated and no heat-treated wood. 4. The efficiencies of bending strength test on the finger-jointed specimens of heat-treated wood with resorcinol-phenol and polyurethane resin adhesives were 0.85, 0.81. respectively.

  • PDF

A study on strength of internal gear (내접치차의 강도에 관한 연구)

  • 정태형
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.45-54
    • /
    • 1984
  • Bending strength of an internal gear tooth is discussed as tooth form factor taking into account the actual stress magnitude. Stress analysis was carried out by the finite element method(FEM) for the calculation of tooth form factor of an internal gear. This paper also investigated the influences of number of teeth and addendum modification coefficient of the internal gear and the influences of number of teeth, addendum modification coefficient, pressure angle, radius of rounding of tooth tip, and bottom clearance coefficient of the pinion-shaped cutter on tooth form factor of internal gear. Generalizing the resultant data, a simple formula for the tooth form factor of an internal gear was derived for the calculation of tooth bending strength of an internal gear.

  • PDF

Tribological Properties of Raction-Bonded SiC-Graphite Composites (반응소결 SiC-graphite 복합체의 마찰마모특성)

  • 백용혁;신종윤;곽효섭;박용갑
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.479-484
    • /
    • 1996
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as mechanical seal slurry valve disc and so on. In this study the effect of graphite addition on the mechanical and tribological properties of RBSC/graphite composites were investigated. The composites were prepared by adding graphite powder to the mixture of SiC powder metallic siliconcarbon black and alumina. Bending strength water absorption friction coefficient the amount of worn out material at a certain time and maximum surface roughness(Rmax) of the prepared composites were measured and crystalline phases were examined with XRD. The composite containing 5 vol% graphite powder showed improved bending strength due to high green density and decreased friction coefficient and wear resistance. The friction coefficient and the wear resistance of the composite were increased by adding graphite powder up to 10 vol% They decreased however as increasing the amount of graphite powder more that 10vol% There was no linear relationship between the tribological properties and bending strength of the composites.

  • PDF

A Fundamental Study on the Properties of Permeable Polymer Concrete (투수성 폴리머 콘크리트의 성질에 관한 기초적 연구)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.363-368
    • /
    • 1997
  • In this study, permeable polymer concretes using unsaturated polyester (UP) resin with binder contents of 6, 7 and 8%, filler-binder ratios of 0, 0.5, 1.0%, and various sand and aggregate contents are prepared, and tested for compressive and flexural strengths, length change and water permeability. The effects of the mix proportioning factors on the strength properties, length change and coefficient of permeability of the permeable polymer concrete are discussed. From the test results, increase in the compressive strength and decrease in the coefficient of permeability of permeable polymer concrete are clearly observed with increasing filler-binder ratio. The permeable polymer concretes having a compressive strength of 9.4~28.3MPa and a coefficient of permeability of 0.12~1.93 cm/s can be produced in the consideration of the mix proportioning factors.

  • PDF

Analysis of Correlation between Flexural Strength and Pore Characteristics on CFRP Rebar as Fabrication Method (탄소보강근의 제조 조건에 따른 휨강도와 기공 특성과의 상관성 분석)

  • Kim, Nam-Il;Kwon, Do-Young;Chu, Yong-Sik
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.328-333
    • /
    • 2022
  • In this study, the fabrication conditions of CFRP rebar were controlled to derive the correlation between flexural strength and pore characteristics. The fabrication conditions of CFRP rebar were adjusted for presence or absence of rib, resin temperature, and curing furnace temperature. Flexural strength and pore characteristics of fabricated CFRP rebar were analyzed. The flexural strength of CFRP rebar was changed depending on the fabrication condition, such as the presence or absence of rib, the resin temperature, and the curing furnace temperature. It was confirmed that the flexural strength of CFRP rebar was significantly lowered when the rib was not wound. As a result of Nano X-ray CT analysis, the max. pore diameter was shown in CFRP rebar prepared at a resin temperature of 60℃. According to optical microscopic analysis, the maximum porosity was 6.89% in No. 1, and the minimum porosity was 2.88% in No. 7. The correlation coefficient between porosity used optical microscopy and flexural strength was -0.64, which was higher than the correlation coefficient between porosity or pore size used Nano X-ray CT and flexural strength.

Estimation on Clamping Force of High Strength Bolts Considering Temperature Variable of Both Site conditions and Indoor Environments (실내환경과 건설현장 온도변수를 고려한 고력볼트 체결력 예측)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.32-40
    • /
    • 2015
  • The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from $-11^{\circ}C$ to $34^{\circ}C$. The indoor temperature condition was ranged from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to $556 N{\cdot}m$. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is $0.13%/^{\circ}C$ while it reaches $2.73%/^{\circ}C$ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as $0.2%/^{\circ}C$. and the modified variable of tension can be determined as $0.18%/^{\circ}C$.

Measurement of Dynamic MOE of 3-Ply Laminated Woods by Flexural Vibration and Comparison with Blending Strength and Creep Performances

  • Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.46-57
    • /
    • 2006
  • To estimate nondestructively strength performances of laminated woods, 3-ply parallel- and cross-laminated wood specimens exposed under atmosphere conditions after bending creep test were prepared for this study. The effects of density of species, arrangement of laminae and lamination types on dynamic MOE obtained by flexural vibration were investigated, and regression analyses were conducted in order to estimate static bending strength and bending creep performances. Dynamic MOE of parallel-laminated woods showed 1.0~1.2 times higher values than static bending MOE, and those of cross-laminated woods showed 1.0~1.4 times higher values than static bending MOE. The degree of anisotropy of dynamic MOE perpendicular to the grain of face laminae versus that parallel to the grain of face laminae was markedly decreased by cross-laminating. There were strong correlations between dynamic MOE by flexural vibration and static bending MOE (correlation coefficient r = 0.919~0.972) or bending MOR (correlation coefficient r = 0.811~0.947) of 3-ply laminated woods, and the correlation coefficient were higher in parallel-laminated woods than in cross-laminated woods. It indicated that static bending strength performances were able to be estimated from dynamic MOE by flexural vibration. Also, close correlations between the reciprocal of dynamic MOE by flexural vibration and initial compliance at 0.008 h of 3-ply laminated woods were found (correlation coefficient r = 0.873~0.991). However, the correlation coefficient between the reciprocal of dynamic MOE and creep compliance at 168 h of 3-ply laminated woods was considerably lower than those between dynamic MOE and initial compliance, and it was hard to estimate creep compliance with a high accuracy from dynamic MOE due to the variation of creep deformation.