• Title/Summary/Keyword: Strength Coefficient

Search Result 1,836, Processing Time 0.036 seconds

Characterization of Tribolayers and Sliding wear at High Temperature between AlCrN Coated Tool Steels and Ultra-high Strength Boron Steels

  • Choi, Byung-Young;Gu, Yoon-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • High temperature wear of AlCrN coated tool steels sliding against the ultra-high strength boron steels used for hot press forming has been studied. The sliding wear tests have been carried out using a pin-on-disc of configuration under applied normal load of 50 N for 20 min with heating the ultra-high strength boron steels up to $800^{\circ}C$. Characterizations of tribolayers formed on the contacting surfaces between the tribopairs of the AlCrN coated tool steels and the ultra-high strength boron steels have been studied. It was found on the tribolayers of the AlCrN coated tool steels that microcracking and oxides containing Fe and Cr to increase friction coefficient were formed at the early stage of sliding wear, followed by the generation of the smeared oxide layers containing Fe transferred from the tribopair to decrease friction coefficient. This may mainly contribute to very low specific wear rate of the AlCrN coated tool steels sliding against the ultra-high strength boron steels, resulting from oxideoxide contact between the tribopair.

Devel opment of Weld Strength Analysis for Dessimilar Metal Friction Welds by Ultrasonic Technique (초음파법에 의한 이종재료 마찰용접강도 해소법의 개발)

  • 오세규;김동조
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.135-149
    • /
    • 1988
  • Friction welding has been shown to have significant economic and technical advantages. However, one of the major concerns in using friction welding is the reliability of the weld quality. No reliable nondestructive test method is available at present for detecting weld quality, particularly in a production environment. Friction welds are formed by the mechanisms of diffusion as well as mechanical interlocking. The severe plastic flow at the interface by forge action of the process brings the subsurfaces so close together that detection of any unbonded area becomes very difficult. This paper presents an attempt to determine the friction weld strength quantitatively using the ultrasonic pulse-echo method. Instead of detecting flaws or cracks at the interface, the new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. It has been finally confirmed that this coefficient could provide the quantitative relationship to the weld quality such as tensile strength, torsional strength, impact value, hardness, etc. So a new nondestructive analysis system of friction weld strength of dissimilar metals using an ultrasonic technique could be well developed.

  • PDF

Prediction of Shear Strength in RC Slender Beams (철근콘크리트 보의 전단강도 예측)

  • Rhee, Chang-Shin;Shin, Geun-Ok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.365-368
    • /
    • 2004
  • This paper deals with the verification of the new truss model that has been conceptually derived and formulated in preceding research. Since the model includes the arch $coefficient-\alpha$, the characteristics of this coefficient are examined, and it appears that the $coefficient-\alpha$ is a function of a/d, $\rho$ and $\rho_v$. The arch $coefficient-\alpha$ is applied to the test specimens available in literatures, and the predicted values are shown to be in excellent agreement with the experimental results.

  • PDF

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

A COMPARATIVE STUDY OF THE PHYSICOCHEMICAL PROPER TIES AND BOND STRENGTH TO METAL BETWEEN THE REGULAR OPAQUE POWDER AND CORE POWDER (도재소부전장금관용 Opaque 분말과 도재전장관용 core 분말의 물리화학적 성질 및 금속과의 결합력에 대한 비교연구)

  • Lim, Jang-Seop;Chung, Chang-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.144-164
    • /
    • 1997
  • The purpose of this study were to investigate the chemical composition, mean particle size, linear thermal expansion coefficient and metal-bonding strength of the regular opaque powder and core powder. In this study, 4 types of ceramic powders, namely Duceram Jacket Opaque powder, Duceram Opaque powder, Vita Hi-Ceram powder, Vita VMK Paint On-88 powder were used. Chemical composition was evaluated by EDS(Energy Dispersive X-ray Spectrophotometer, Oxford QX-2000, England), particle size was measured by MALVERN Instruments(MALVERN Instruments SB. OC., U.S.A.. ad linear thermal expansion coefficient was measured by dilatometer(Motoyama, Japan). Bond strength was measured by the Universal tsting machine(Istron Co., Ltd., U.S.A.). The Results were as follows : 1. Through recognition of the relative difference in chemical composition between the core powder and the regular opaque powder, the difference in the proportion of $Al_2O_3$ in each type of material is demonstrated ; Duceram Jaket Opaque powder : 30.16%, Duceram Opaque powder : 16.60%, Vita Hi-Ceram : 63.64%, Vita VMK Paint-On 88 : 16.16%. 2. There was no significant difference in the proportion of metal-bonding materials between the core powder and the regular opaque powder. 3. In the regular opaque powder, alkaline materials were incoporated in order to increase the coefficient of thermal expansion. 4. In the particle size analysis, there was no significant difference in mean particle size or in the particle size distribution between the core powder and the regular opaque powder. 5. In the thermal expansion test for temperature range of $25-600^{\circ}C$, the regular opaque powder had higher coefficient of thermal expansion than that of core powder. 6. In the 4 point flexural bending test, there was no statistically significant difference in the mean bond strength between the core powder and the opaque powder among the Duceram products.

  • PDF

Properties Analysis for Small Elements Added Shadow Mask Materials

  • Kim, Ku-Hak;Kim, Chung-Ho;Kim, Dong-Soo;Kim, One-Seek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1053-1055
    • /
    • 2002
  • Recently CRT is getting large-sized, Flatness and High Fine Pitched in the meantime the raw material for shadow mask is in rapid progress of thinness, Low Thermal Expansion and high strength.Until now we have used AK(Aluminum Killed) & Invar(Fe-Ni alloy) materials for main raw material of shadow mask component. However recently Nb and Co addition and Nb+Co addition, which has advantage of Low Thermal Expansion and High Strength. has been developed as well as applying in mass production as CRT's trend has become more flat and fine pitch. Among of them, Co addition has been mass production as forming type (Flat CRT) with the beneficial effect of low thermal expansion & high strength for the first time. Since then Nb+Co addition has been used in mass production by the request of much higher strength of shadow mask component. In case of Nb addition, It's thermal expansion coefficient is a little lower than normal Invar and a little higher than Co addition, meanwhile Its Mechanical property is almost similar to Co Addition. The used samples of this experiment are 36%Ni + Fe, 32%Ni + 5%Co + Fe, 32%Ni + 5%Co + 0.3%Nb + Fe, 32%Ni + 0.3%Nb + Fe with heat treatment temperature of 600$^{\circ}C$, 650$^{\circ}C$, 700$^{\circ}C$, 750$^{\circ}C$, 800$^{\circ}C$, 850$^{\circ}C$, 900$^{\circ}C$ respectively under the condition of 15min holding time. After heat treatment, we have observed the change of mechanical property with addition of small elements through mechanical property investigation and metal structure observation as well as transition of thermal expansion coefficient by measuring of thermal expansion coefficient at 850$^{\circ}C$. In conclusion, 5%Co addition indicates that its thermal expansion coefficient is very similar under the condition of at 850$^{\circ}C$ for 15min 's heat treatment. From the experimental result it is suggested that Co addition is mostly suitable for Doming property and Nb addition is mostly suitable for Drop property.

  • PDF

A Study on the Soft Ground Distubance Characteristics by Large Block Sample (대형자연시료를 이용한 지반교란 특성에 관한 연구)

  • Yu, Seong-Jin
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.43
    • /
    • pp.98-106
    • /
    • 2007
  • In this paper, a ground disturbance effects, strength and consolidation characteristics of soft clay through using the large block samples($\theta$:300mm, H:400mm) and the piston samples, f hose which had been gathered in west coast and south coast. Especially, we have assessed the coefficient of horizontal consolidation when penetrating the mandrel considering the variance of ratio between diameter and height in drainage sample through the experiment of the oedometer test and Rowecell and also investigated the disturbance area in smear zone by interior model test, the strength originated by disturbance, the variance in characteristics of the consolidation. As the result, the large block sample has been investigated that ihe uniaxial compression test(qu) was shown bigger than the piston sample by about 11-19%. Under the size of anistropy in consolidation, the coefficient ratio of consolidation(ch/cv,) perfomed by standard consolidation test(SC) was shown bigger than that of (Cro/Cv) by the Rowecell test. And the coefficient ratio of consolidation(Cro/Cv) perfomed by piston sample was evaluated bigger than that Of (Cro/Cv) by the large block sample by about 0.9-1.9. The coefficient ratio of consolidation along with the variance in ratio of between diameter and height when penetrating the mandrel was shown big difference according to the characteristics of soil of the specimen. In addition, ds/dw of smear zone at the marine clay in west-south was ranged from 1.6 to 4.2. The width of variance in rat io[(qud)/(quud)] of strength n the area between disturbance and undisturbance was shown big as about 72-91% but the principle was judged with the similiar range when the decrease of the strength in smear zone become the zone under 25% in unditurbance area.

  • PDF

A Study on the Friction and Wear of Bronze Sintered Friction Materials (동계소결 마찰재의 마찰마모에 관한 연구)

  • Lee, Jong-Hyung;Park, Moo-Soo;Yang, Seong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.5-10
    • /
    • 2004
  • The effect of bronze sintered friction materials on frictional and mechanical properties is studied with the content(8~18 wt,%) and shapes (flake and irregular) of graphite that is used as solid lubricants to meet diverse characteristics such as low coefficient of friction, low wear rate and high bending strength. The content and shapes of graphite are optimized by statistical experiments. Friction test was carried out measure friction coefficient, temperature dependence and wear rate. As a result of experiments, the density, hardness and bending strength with a shape of flake graphite are lower and decrease rapidly than that of Irregular, as the content of graphite increases up to 18 wt% Aftei friction test, coefficient of friction is 0.3~0 4 and wear rate is $0.32{\sim}2.98{\times}10^{-7}cm^3/kg{\cdot}m$. When the content of graphite increases, coefficient of friction increases In a shape of flake graphite and decreases in a shape of irregular graphite.

  • PDF

Chloride Diffusivity of Concrete using Recycled Aggregate by Strength Levels (강도수준별 순환골재 콘크리트의 염화물 확산특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • This paper presents mechanical properties and chloride diffusivity of the recycled aggregate concretes(RAC) in which natural coarse aggregate was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Engineering properties of RAC were tested for slump test, air content, compressive strength, chloride penetration depth and chloride diffusion coefficient. The test results indicated that the workability of RAC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. Furthermore, the result indicated that the measured chloride diffusion coefficient increases by 144% with the increase of the RCA replacement. In the case of the concrete having low level compressive strength, the increase of chloride diffusion coefficient tends to be higher when using the RCA. However, the trend of chloride diffusion coefficient in high level compressive strength concrete is similar to that obtained in general concrete. This is because that the effect of the RCA replacement could be a decrease with increase of compressive strength. Therefore, an advance on the admixture application and mix ratio control are required to improve the chloride resistivity when using the recycled aggregate in large scale.

Study on the mechanical Properties of Carbon Fiber Sheet (탄소섬유쉬트의 재료 역학적 특성에 관한 연구)

  • 이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.803-808
    • /
    • 1998
  • As carbon fiber is a light-weight materials, high tensile strength and durability compared with rebar, the retrofitting method for RC structures using carbon fiber sheet (CFS) must be use widely. In this paper, the tensile strength test for carbon fiber sheet variable of CF's weight and elastic modulus to evaluate the design tensile strength of carbon fiber sheet which is needed for the strengthening design of CFS and the calculation of strengthening effect. As a result, the design tensile strength of CFS can be calculate using the effect coefficient of strengthening(α) of CFS, the average tensile strength of CFS and the standard deviation of CFS(equation 5)

  • PDF