Lee, Jun Heui;Baek, Sung Ha;Lee, Soon Jo;Bae, Hae Young
Spatial Information Research
/
v.20
no.5
/
pp.99-109
/
2012
Recently, due to the growth of social media and spread of smart-phone, the amount of data has considerably increased by full use of SNS (Social Network Service). According to it, the Big Data concept is come up and many researchers are seeking solutions to make the best use of big data. To maximize the creative value of the big data held by many companies, it is required to combine them with existing data. The physical and theoretical storage structures of data sources are so different that a system which can integrate and manage them is needed. In order to process big data, MapReduce is developed as a system which has advantages over processing data fast by distributed processing. However, it is difficult to construct and store a system for all key words. Due to the process of storage and search, it is to some extent difficult to do real-time processing. And it makes extra expenses to process complex event without structure of processing different data. In order to solve this problem, the existing Complex Event Processing System is supposed to be used. When it comes to complex event processing system, it gets data from different sources and combines them with each other to make it possible to do complex event processing that is useful for real-time processing specially in stream data. Nevertheless, unstructured data based on text of SNS and internet articles is managed as text type and there is a need to compare strings every time the query processing should be done. And it results in poor performance. Therefore, we try to make it possible to manage unstructured data and do query process fast in complex event processing system. And we extend the data complex function for giving theoretical schema of string. It is completed by changing the string key word into integer type with filtering which uses keyword set. In addition, by using the Complex Event Processing System and processing stream data at real-time of in-memory, we try to reduce the time of reading the query processing after it is stored in the disk.
Logistics is in the limelight as one of a variety of RFID applications. The RFID technology is actively being applied to improve the competitiveness power of companies through the synthetic management of products and information. The RFID system generates large volume of stream data. It has problems which occur waste of storage and long processing time when storing large data and processing queries. Recently, many studies have been done to solve the problems which are generated in RFID system. In this thesis, we propose an efficient data management scheme for path queries and containment queries which are occurred frequently. The proposed data management scheme considers a change of the containment of products during a transport and supports a path of changed products by representing a path of various containments. Also, the compression utilizing the structure of supply chain reduces the stored data volumes. In order to show the superiority of our approach, we compare it with the existing schemes. As a result, our experimental results show that our scheme outperforms the existing scheme in terms of storage efficiency and query processing time.
Ji, Min-Sub;Lee, Yeon;Kim, Gyeong-Bae;Bae, Hae-Young
Journal of the Korea Society of Computer and Information
/
v.17
no.1
/
pp.31-40
/
2012
u-GIS DSMSs have been researched to deal with various sensor data from GeoSensors in ubiquitous environment. Also, they has been more important for high availability. The data from GeoSensors have some characteristics that increase explosively. This characteristic could lead memory overflow and data loss. To solve the problem, various load shedding methods have been researched. Traditional methods drop the overloaded tuples according to a particular criteria in a single server. Tuple deletion sensitive queries such as aggregation is hard to satisfy accuracy. In this paper a dual processing load shedding method is suggested to improve the accuracy of aggregation in clustering environment. In this method two nodes use replicated stream data for high availability. They process a stream in two nodes by using a characteristic they share stream data. Stream data are synchronized between them with a window as a unit. Then, processed results are merged. We gain improved query accuracy without data loss.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.397-400
/
2008
무한히 발생되는 실시간 데이터와 디스크에 저장된 히스토리컬 데이터를 동시에 처리하는 하이브리드 질의에 관한 연구가 활발히 이루어지고 있다. 하이브리드 질의는 디스크에 저장된 대용량의 공간 데이터 처리를 위해 빠른 디스크 입/출력을 요구한다. 이러한 데이터를 처리하기 위해 인덱스, 데이터 축소 기법등이 연구되었다. 데이터의 빠른 검색을 위한 인덱스 기법은 디스크에 분산 저장된 데이터에 대한 탐색 비용과 입/출력 비용을 줄이지 못한다. 또한, 샘플링을 통해 디스크 입/출력 시간 비용을 줄이는 데이터 축소 기법은 데이터의 정확성을 떨어뜨려 정확성을 요구하는 하이브리드 질의에서는 이용하기가 어렵다. 이논문에서는 디스크 입/출력 시간과 디스크 탐색 시간 비용을 줄이고, 정확성을 보장하는 과거 공간질의 처리를 위한 고속로딩 기법을 제아난다. 제안기법은 공간을 그리드 형태로 나누고 인접한 공간 데이터를 함께 관리함으로써 디스크 입/출력 비용을 줄 일 수 있다. 또한, 공간적으로 인접한 데이터를 물리적으로 인접한 곳에 저장하여 디스크 탐색시간 비용을 줄일 수 있다. 이렇게 저장된 데이터는 손실 없이 모두 저장되며, 정확성 또는 보장할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.348-351
/
2009
유비쿼터스 사회를 실현하는 핵심기술인 u-GIS 공간정보 기술은 데이터 스트림 처리 시스템(Data Stream Management System)과 지리정보 시스템(Geography Information System)이 결합된 플랫폼인 u-GIS DSMS를 요구한다. u-GIS DSMS는 GeoSeonsor에서 수집되는 센서 테이터와 GIS의 공간정보 데이터를 결합하여 처리하는 공간영역질의가 다수 요구된다. 이런 공간영역질의들은 특정 지역에 밀집하게 등록되는 경향이 있으며, 유사한 프리디킷을 가질 가능성이 높다. 이러한 특징은 공간영역질의가 특정 지역에 밀집되면 다수의 비슷한 연산들이 반복적으로 처리하기 때문에 시스템 성능이 저하 될 것이다. 이를 해결하기 위해 영역질의 색인기법 연구가 활발히 진행되고 있다. 그러나 기존의 VCR-Index와 CQI-Index 기법은 질의영역을 셀 구조나 가상구조로 분할하여 처리하기 때문에 자원 및 연산을 공유 할 수 없어 질의 처리 속도가 현저히 저하되기 때문에 대량의 공간영역질의 처리에는 부적합하다. 그래서 본 논문에서는 공간영역질의의 효율적인 연산 공유를 위한 질의영역 밀집도 기반의 그룹화 기법을 제안한다. 이 기법은 질의영역의 밀집도를 이용하여 공간영역질의들을 그룹화 후 색인을 구성한다. 색인된 영역들의 데이터는 단일 큐로 구성 후 질의들의 프리디킷을 분석하여 자원 및 연산 공유기법을 통해 기존의 기법보다 처리 속도 향상 및 메모리 사용을 감소시켰다.
Journal of Korea Spatial Information System Society
/
v.11
no.2
/
pp.7-12
/
2009
In this paper, we discuss the problem of continuous k.nearest neighbors (CKNN) monitoring over distributed streams wavelet synopses, which also considered sliding window structure under stream based kNN query. We developed traditional skylines techniques and propose a new method which called DR.skylines to process CKNN queries as a bandwidth.efficient approach. It tries to process CKNN queries on synopses for optimized sliding window time and space computation.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.171-176
/
2006
데이터 스트림(data stream)을 처리하기 위해서는 기본적으로 질의 대상이 되는 슬라이딩 윈도우에 대한 지원과 이에 대한 연속질의를 수행할 수 있어야 한다. 기존의 관계형 DBMS는 성능 문제로 인하여 데이터 스트림 처리에 한계가 있었으나 고성능 메인메모리 DBMS의 등장으로 빈번히 발생하는 스트림에 대한 충분한 질의 처리 능력을 갖추게 되었다. 본 논문에서는 메인메모리 DBMS기반에서의 데이터 스트림에 대한 연속질의 처리를 위해서 새로운 접근방법을 제공한다. 즉. 고성능 메인 메모리 DBMS의 높은 삽입과 갱신 성능을 전제로 트리거를 통한 슬라이딩 윈도우의 지원방법을 제시하고. 윈도우에 대한 연속질의는 응용에서 지원하되 효율적인 질의처리를 위해 저장프로시저를 적용한다. 이러한 메커니즘의 연속질의 처리 시스템은 CQL에서 정의한 세 가지 윈도우 유형을 모두 지원할 수 있다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.8
no.5
/
pp.159-166
/
2008
Recently, according to the rapid development of location positioning technology and wireless communications technology and increasement of usage of moving object data, many researches and developments on the real-time locating systems which provides real time service of moving object data stream are under proceeding. However, MO (Moving Object) DBMS used based system in the in these systems is the inefficient management of moving object data streams, and the existing DSMS (Data Stream Management System) has problems that spatio-temporal data are not handled efficiently. Therefore, in this thesis, we designed and implemented spatio-temporal DSMS for efficient real-time management of moving object data stream. This thesis implemented spatio-temporal DSMS based STREAM (STanford stREam dAta Manager) of Stanford University is supporting real-time management of moving object data stream and spatio-temproal query processing and filtering for reduce the input loading. Specifically, spatio-temporal operators of the spatio-temporal DSMS support standard interface of SQL form which extended "Simple Feature Specification for SQL" standard specifications presented by OGC for compatibility. Finally, implemented spatio-temporal DSMS in this thesis, proved the effectiveness of the system that as applied real-time monitoring areas that require real-time locating of object data stream DSMS.
GPUs are stream processors based on multi-cores, which can process large data with a high speed and a large memory bandwidth. Furthermore, GPUs are less expensive than multi-core CPUs. Recently, usage of GPUs in general purpose computing has been wide spread. The CUDA architecture from Nvidia is one of efforts to help developers use GPUs in their application domains. In this paper, we propose techniques to parallelize a skyline algorithm which uses a simple nested loop structure. In order to employ the CUDA programming model, we apply our optimization techniques to make our skyline algorithm fit into the performance restrictions of the CUDA architecture. According to our experimental results, we improve the original skyline algorithm by 80% with our optimization techniques.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.1
/
pp.38-43
/
2001
This Paper suggests a new feature for shot detection, using the proposed robust feature from the DC image constructed by DCT DC coefficients in the MPEG video stream, and proposes the characterizing value that reflects the characteristic of kind of video (movie, drama, news, music video etc.). The key frames are pulled out from many frames by using the local minima and maxima of differential of the value. After original frame(not do image) are reconstructed for key frame, indexing process is performed through computing parameters. Key frames that are similar to user's query image are retrieved through computing parameters. It is proved that the proposed methods are better than conventional method from experiments. The retrieval accuracy rate is so high in experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.