• Title/Summary/Keyword: Strawberry

Search Result 804, Processing Time 0.034 seconds

Stem Rot of Strawberry Caused by Sclerotium rolfsii in Korea

  • Kwon, Jin-Hyeuk;Shen, Shun-Shan;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.103-105
    • /
    • 2004
  • A destructive stem rot of strawberry (Fragaria x ananassa cv. Akihime) sporadically occurred in farmers' fields in Daegok-myon, Jinju city, Gyeongnam province in Korea. The infected plants showed stem and crown rot, with occasional blighting of the whole plant. White mycelia appeared on stems of infected clones and sclerotia formed on the old lesions near soil surface. The fungus formed white colony on PDA and showed maximum mycelial growth and sclerotial formation at $30^{\circ}C$. The fungus usually have many narrow hyphal strands, 2.6-10.0 $\mu\textrm{m}$ in width, in the aerial mycelium. Typical clamp connections were formed on the mycelium. Sclerotia were spherical and 1.0-2.4 mm in size. The fungus was repeatedly isolated from infected tissues and identified as Sclerotium rolfsii. Its patho-genicity was confirmed when inoculated onto straw-berry. This is the first report on the stem rot of strawberry caused by S. rolfsii in Korea.

ZnO Nanorods Based Dye Sensitized Solar Cells Sensitized using Natural Dyes Extracted from Beetroot, Rose and Strawberry

  • Senthil, T.S.;Muthukumarasamy, N.;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1050-1056
    • /
    • 2014
  • Dye sensitized solar cells were fabricated using natural dyes extracted from beetroot, rose and strawberry. The ZnO nanorod working electrode has been prepared by simple hydrothermal method. The crystallinity and morphology of the prepared electrode has been studied using X-ray diffraction and scanning electron microscopy techniques. The effect of natural dye extract temperature, pH of the dye and the solvent used for dye preparation on the solar cell characteristics have been studied. The efficiency of strawberry extract sensitized ZnO nanorod solar cells are found to be better than the other solar cells sensitized using beetroot and rose extracts.

Preparation and Quality Properties of the Jam Aroma- recovered (향기성분이 회수.첨가된 잼의 제조와 품질특성)

  • 이상현;이영춘
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.4
    • /
    • pp.281-286
    • /
    • 1993
  • Strawberry pulp was separated into serum and Insoluble pulp by centrifugation. The serum was concentrated in vacuo at 55~58$^{\circ}C$ and 10% aroma recovered. Two folds concentrated strawberry pulp was prepared by mixing concentrated serum, aroma fraction and Insoluble pulp. To develop aroma-rich jam, the strawberry jam was prepared by filling mixture of concentrated pulp, sucrose, citric acid and pectin into retortable pouches and by heating them after heat-seating. The color and flavor quality of the jam prepared by new method were better than the jam prepared by conventional method, as Indicated by GC, GC/MS data, surface color and anthocyanin contents. These results were confirmed by the sensory evaluations. Flavor off-flavor, color intensity and overall acceptance were superior to the conventional method.

  • PDF

Co-treatment with Origanum Oil and Thyme Oil Vapours Synergistically Limits the Growth of Soil-borne Pathogens Causing Strawberry Diseases

  • Jong Hyup, Park;Min Geun, Song;Sang Woo, Lee;Sung Hwan, Choi;Jeum Kyu, Hong
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.673-678
    • /
    • 2022
  • Vapours from origanum oil (O) and thyme oil (T) were applied to the four soil-borne strawberry pathogens Fusarium oxysporum f. sp. fragariae, Colletotrichum fructicola, Lasiodiplodia theobromae, and Phytophthora cactorum, causing Fusarium wilt, anthracnose, dieback, and Phytophthora rot, respectively. Increasing T vapour doses in the presence of O vapour strongly inhibited mycelial growths of the four pathogens and vice versa. When mycelia of F. oxysporum f. sp. fragariae and P. cactorum exposed to the combined O + T vapours were transferred to the fresh media, mycelial growth was restored, indicating fungistasis by vapours. However, the mycelial growth of C. fructicola and L. theobromae exposed to the combined O + T vapours have been slightly retarded in the fresh media. Prolonged exposure of strawberry pathogens to O + T vapours in soil environments may be suggested as an alternative method for eco-friendly disease management.

A Model of Strawberry Pest Recognition using Artificial Intelligence Learning

  • Guangzhi Zhao
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.133-143
    • /
    • 2023
  • In this study, we propose a big data set of strawberry pests collected directly for diagnosis model learning and an automatic pest diagnosis model architecture based on deep learning. First, a big data set related to strawberry pests, which did not exist anywhere before, was directly collected from the web. A total of more than 12,000 image data was directly collected and classified, and this data was used to train a deep learning model. Second, the deep-learning-based automatic pest diagnosis module is a module that classifies what kind of pest or disease corresponds to when a user inputs a desired picture. In particular, we propose a model architecture that can optimally classify pests based on a convolutional neural network among deep learning models. Through this, farmers can easily identify diseases and pests without professional knowledge, and can respond quickly accordingly.

Crown and Root Rot of Strawberry Caused by Neopestalotiopsis clavispora in Korea (Neopestalotiopsis clavispora에 의한 딸기 뿌리썩음병 한국 내 발생)

  • Park, Kyoungmi;Han, Inyoung;Lee, Seok-Min;Choi, Si-Lim;Kim, Min Chul;Lee, Heungsu
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.427-435
    • /
    • 2019
  • The occurrence of the crown and root rot on strawberry (Fragaria×ananassa Duch.) has been reported in greenhouses in Sancheong and Hamyang, Gyeongnam province, Korea in June, 2019. The infected plants showed browning rot of the inner crown and root, causing delayed development, lack of growth, and poor rooting. The browning rot of the inner crown and root can sometimes lead to wilting and collapsing of plants. Fungi were isolated from the symptomatic root and crown. Based on the results of morphological and phylogenetic analyses, the causal agent of the disease was identified to be Neopestalotiopsis clavispora. The fungal isolates were then used for inoculation into strawberry plants to determine the causal agent of the crown and root rot as per Koch's postulates. The inoculated strawberry plants showed the same symptoms as the originally infected plants, and the fungal pathogen re-isolated from the lesions showed the same morphological characteristics as the original pathogen. This is the first report on the occurrence of crown and root rot on strawberry (Fragaria×ananassa Duch.) caused by N. clavispora in Korea.

Effects of Saline Irrigation Water on Crop Growth in Strawberry and Red Radish (딸기 및 적환무의 관개용수 염도수준에 따른 생육영향 분석)

  • Kim, Soo-Jin;Bae, Seung-jong;Kim, Hakkwan;Jeong, Hanseok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.85-94
    • /
    • 2020
  • Since the salinity of irrigation water is a critical constraint to the production of certain vegetable crops, salinity was considered as one of the most important factors of irrigation water. The purpose of this study were to monitor and assess the effects of saline irrigation water on strawberry and red radish growth in protected cultivation. One control and three treatments, which were differentiated according to the level of salinity in irrigated water, were employed for each vegetable to assess the effects of the irrigation with saline water. Monitoring has shown that using irrigation water with salinity above a certain level causes excessive accumulation of sodium (Na+) in both strawberry and red radish. Increased Na+ content was analyzed to be able to decrease the sugar content in strawberry. In addition, the salinity higher than the threshold level of irrigation water was found to reduce the growth and yield of strawberry and red radish. This study could contribute to suggest criteria for safe use of saline water in protected cultivation, although long-term monitoring is needed to get more representative results.

Preservative Effect of Natural Antimicrobial Substances Used as Steeping and Packaging Agent on Postharvested Strawberries (천연항균물질을 침지 및 포장소재로 이용한 딸기의 저장효과)

  • 정순경;조성환
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.37-40
    • /
    • 2003
  • Coptis chinensis extract and grapefruit seed extract, natural antimicrobial substances, were applied to the dipping treatment of strawberry and incorporated in the packaging films. Strawberry was steeped in the extract solutions of 50 ppm concentration and packed with the low density polyethylene(LDPE) films incorporated with 1% extracts. During the storage at 5$^{\circ}C$, the qualities of microbial counts, awぶy ratio, texture and chemical attributes were measured for the pretreated strawberry. The LDPE films incorporated with the extracts retarded the growth of aerobic bacteria, lactic acid bacteria and yeast that had been contaminated before the pretreatment, significantly lowed the decay ratio, and gave better retention of textural firmness. The chemical and physical qualities of strawberry were not affected by the packaging films. When strawberry was steeped in the extract solutions, the effects of the packaging film incorporated with the extracts on the qualities of strawberry were accelerated.

Effect of Burkholderia contaminans on Postharvest Diseases and Induced Resistance of Strawberry Fruits

  • Wang, Xiaoran;Shi, Junfeng;Wang, Rufu
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.403-411
    • /
    • 2018
  • This study takes strawberry-fruits as the test material and discusses the effect of Burkholderia contaminans B-1 on preventing postharvest diseases and inducing resistance-related substances in strawberry-fruits. Soaking and wound inoculating is performed to analyze the inhibitory effects of different treatment solutions on the gray mold of postharvest strawberry-fruits. The count of antagonistic bacteria colonies in the wound is found, and the dynamic growth of antagonistic bacteria and the pathogenic fungus is observed by electron microscopy. The results indicated that, either by soaking/wound-inoculating, the fermentation and suspension of antagonistic bacteria significantly reduced the incidence of postharvest diseases of strawberry-fruits. With wound inoculation, the inhibition rate of antagonist fermentation and suspension ($1{\times}10^{10}cfu/ml$) respectively reached 77.4% and 66.7%. It also led to a significant increase in the activity of resistance-related enzymes, i.e., phenylalanine ammonia lyase (PAL), 4-coumarate coenzyme A ligase (4CL), cinnamate-4-hydroxylase (C4H) and chalcone isomerase (CHI). On 1 d and 2 d post-treatment, the activity of 4CL was respectively 3.78 and 6.1 times of the control, and on 5 d, the activity of PAL was increased by 4.47 times the control. The treatment of antagonistic bacteria delayed the peaking of cinnamyl-alcohol dehydrogenase (CAD) activity and promoted the accumulation of lignin and total phenols. The antagonistic bacteria could be well colonized in the wounds. On 4-5 d post-inoculation, the count of colonies was $10^8$ times of that upon inoculation. Electronmicroscopy indicated that the antagonistic bacteria delayed the germination of pathogenic spores in the wounds, and inhibited further elongations of the mycelia.