• Title/Summary/Keyword: Strands

Search Result 410, Processing Time 0.026 seconds

Sensing and Interfacial Evaluation of Ni Nanowire Strands/Polymer Composites using Electro-micromechanical Technique (Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 강화 고분자 복합재료의 Sensing과 계면 물성 평가)

  • Kim, Sung-Ju;Jung, Jin-Gyu;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.141-144
    • /
    • 2005
  • Sensing and interfacial evaluation of Ni nanowire strands/polymer composites were investigated using Electro-micromechanical technique. Electro-micromechanical techniques can be used as sensing method for micro damage, loading, temperature of interfacial properties. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type/epoxy composites were measured using uniformed cyclic loading and tensile test. Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Some new information on temperature and humidity sensing plus loading sensing of Ni nanowire strands/polymer composites could be obtained from the electrical resistance measurement as a new concept of the nondestructive interfacial evaluation.

  • PDF

A Study on Fatigue Characteristics of Domestic Low-Relaxation PS Strands (국산 저이완 PS 강연선의 피로특성에 관한 연구)

  • 변근주;송하원;박상순;노병철
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.113-119
    • /
    • 1999
  • Fatigue failure is a phenomenon such that structures under cyclic service load is failed by sudden brittle manner. Therefore, in order to obtain structures safety against the fatigue failure during their service lifes, fatigue characteristics should be considered for design and analysis of the structures. As stress range of prestressed (PS) tendons, which governs fatigus characteristic of prestressed concrete (PSC) structures, increases with increased use of partial prestressig, it is more necessary to consider fatigue characteristics of PS tendons. In this paper, direct-tension fatigue experiments with special specimen-setting devices are carried out to obtain fatigue characteristics of domestic low relaxation PS strands having different diameters and PS strands connected with coupler. Then, allowable stress range of fatigue for PSC beams using low relaxation strands are presented for the fatigue examination of prestressed concrete beams applied cyclic loading.

Tensile behavior of new 2,200 MPa and 2,400 MPa strands according to various types of mono anchorage

  • Kim, Jin Kook;Seong, Taek Ryong;Jang, Kyung Pil;Kwon, Seung Hee
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.383-399
    • /
    • 2013
  • High-strength strands are widely used as a key structural element in cable-stayed bridges and prestressed concrete structures. Conventional strands for stay cable and tendons in prestressed concrete structures are ${\phi}$15.7mm coated seven-wire strands and ${\phi}15.2mm$ uncoated seven-wire strands, respectively, but the ultimate strengths of both strands are 1860MPa. The objective of this paper is to investigate the tensile behavior of a newly developed ${\phi}15.7mm$ 2,200 MPa coated strand and a ${\phi}15.2mm$ 2,400 MPa uncoated strand according to various types of mono anchorages and to propose appropriate anchorages for both strands. Finite element analyses were initially performed to find how the geometry of the anchor head affects the interaction among the anchor head, the wedge and the strand and to find how it affects the stress distributions in both parts. Tensile tests for the new strands were carried out with seven different types of mono anchorages. The test results were compared to each other and to the results obtained from the tensile tests with a grip condition. From the analysis and the test results, desirable mono anchorages for the new strands are suggested.

The Load Transfer Performance of Post-tension Anchorage with 2,400 MPa Strands (2,400 MPa 강연선용 포스트텐션 정착구의 하중전달성능)

  • Kim, Sun-Woo;Lho, Byeong-Cheol;Lim, Jung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.63-71
    • /
    • 2018
  • Strands with ultimate strength of 2,400 MPa was developed and applied in the KCI Code and the KS standard. A high-strength prestressed strand to be applied to a structure, a suitable anchorage system should be used together. Recently, a post tension anchorage for 2,400 MPa strands was developed. but there is not much research on performance evaluation. Therefore, in this study, structural analysis of local zone with 9 strands, 15 strands, and 19 strands anchorage were investigated respectively, which are most widely used for post tensioning anchorages with 2,400 MPa strands, according to PTI anchorage zone design method, and Load transfer performance from ETAG013 and/or KCI-PS101 was evaluated. Furthermore, the adequacy of the test was also analyzed by nonlinear numerical analysis. As results, the anchorages with 2,400 MPa strands satisfied the structural performance of the local area and satisfied the load transfer performance condition.

Investigation of Stress Changes in Concrete and Strands according to Cutting Order of the Strands in Pre-tensioned Concrete Slab (프리텐션 슬래브 구조에서 긴장강선 용접절단순서에 따른 긴장재 및 콘크리트의 응력변화 고찰)

  • Moon, Do-Young;Kim, Jang-Ho;Kim, Gyu-Seon;Yun, Man-Geun;Zi, Goang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.419-429
    • /
    • 2009
  • This study focuses on the effect of the cutting order of prestressing strands on the strain change in the strands and on the state of stress of concrete, experimentally and numerically. In the experiment, strain of strands and of transversal reinforcement were measured for three different cutting orders during detensioning process by using flame-cutting procedure. The experimental results were compared with those obtained from the FE analysis. As a results of the experiment, it is confirmed that the cutting order of prestressing strands affected on the strain of strands as well as of transversal reinforcement. The FE analysis gave similar results to those obtained from the experiment. Therefore, the cutting order should be chosen appropriately to when the strands get detensioned.

Transfer Bond test on Domestic Sevenwire Prestressing Strands (국내산 7연강선의 트렌스퍼 정착부착 실험)

  • 김승욱;김대훈;유재천;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.387-392
    • /
    • 1999
  • The bond performance of prestressing strands is still not well understood and is still in controversy on the validity of the test results up to today, although it is a basic information to desing the prestressed pretensioned concrete beams. Different transfer length has been found for a product of the same company, but of the different production methods and factories in the United States. It is necessary to determine optimum transfer bond length of the domestic stands because the ultimate flexural and shear capacity in a section of prestressed concrete beams are evaluated under the assumption that the anchorage bond failure shall not happen. The transfer lenght of low-relaxation, Gr 270, and 1/2" seven-wire prestressing strands from four domestic companies will be evaluated by the concrete strain method. The recent concept of the 95% Maximum Average Strain Method suggested by Russel et al. will be considered to obtain the transfer length of domestic strands. It will be also evaluated if the domestic strands are conform to ACI 318-95.8-95.

  • PDF

Stability of the Cable-in-Conduit Conductors (CIC 초전도 도체의 안정성)

  • 류경우
    • Electrical & Electronic Materials
    • /
    • v.10 no.9
    • /
    • pp.895-900
    • /
    • 1997
  • A Quench in cable-in-conduit (CIC) conductors is often initiated by a disturbance such as strand motion that generates a highly localized normal zone in a strand or a few strands of the CIC conductors. The localized normal zone causes current and heat transfer between a disturbed strand and neighboring strands. Electrical and thermal contact characteristics between strands thus have an effect on the transient stability of the CIC conductors. In this paper the effect of contact characteristics between strands on the CIC conductor stability is presented based on the measured heat transfer characteristics of supercritical helium (SHe) for the local heating. The quench and recovery processes of the strands for the abrupt and highly localized disturbance are analyzed at the boundary between quench and recovery.

  • PDF

Taxonomic Considerations on the Bast Fibres in the Genus Sida L. (Malvaceae) in Nigeria

  • Oladele, F.A.
    • Journal of Plant Biology
    • /
    • v.29 no.2
    • /
    • pp.135-143
    • /
    • 1986
  • The distributional pattern of the bast fibres strands or bundles in the stems of Sida species represented in Nigeria is studied. Three major patterns of arrangement are recognized, namely aggregation of fibre strands into units with wedge-shaped, or triangular, rectangular, rhomboidal, square and trapezoid outlines; serial arrangement of fibre strands into rings or circular, ovoid, semi-circular or crescentic rows; and intermediate pattern in which both fibre strands-aggregates and serial rows of strands patterns are combined. The first pattern is found in S. linifolia, S. urens and S. scabrida, the second in S. cordifolia, S. pilosa, S. ovata, S. rhombifolia and S. spinosa, and the third in S. garckeana, and S. acuta. A dichotomous key based on these features is presented. Dimensional characteristics of the bast fibre cells are also given.

  • PDF

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.

Transfer length of 2400 MPa seven-wire 15.2 mm steel strands in high-strength pretensioned prestressed concrete beam

  • Yang, Jun-Mo;Yim, Hong-Jae;Kim, Jin-Kook
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.577-591
    • /
    • 2016
  • In this study, the transfer length of 2400 MPa, seven-wire high-strength steel strands with a 15.2 mm diameter in pretensioned prestressed concrete (PSC) beams utilizing high strength concrete over 58 MPa at prestress release was evaluated experimentally. 32 specimens, which have the variables of concrete compressive strength, concrete cover depth, and the number of PS strands, were fabricated and corresponding transfer lengths were measured. The strands were released gradually by slowly reducing the pressure in the hydraulic stressing rams. The measured results of transfer length showed that the transfer length decreased as the concrete compressive strength and concrete cover depth increased. The number of strands had a very small effect, and the effect varied with both the concrete cover depth and concrete strength. The results were compared to current design codes and transfer lengths predicted by other researchers. The comparison results showed that the current transfer length prediction models in design codes may be conservatively used for 2400 MPa high-strength strands in high-strength concrete beams exceeding 58 MPa at prestress release.