• Title/Summary/Keyword: Strand break

Search Result 62, Processing Time 0.017 seconds

Effect of Some Natural Products on the DNA Damaging Activity of 4NQO (4-nitroquinoline n-oxide) and Daunorubicin (Daunorubicin과 4NQO의 DNA damaging activity에 대한 천연물질의 영향)

  • 이완희;이행숙;권혁일;박진서;최수영;이길수
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.112-115
    • /
    • 1999
  • The action mechanism of the inhibitory effect of some natural products on the DNA strand break and DNA damage was investigated in vitro and in vivo. In the E. coli chromosomal DNA strand break experiment in vitro, three mushroom water extracts were effective on the DNA strand breaking by daunorubicin. Phellinus linteus water extract inactivated daunorubicin, a DNA strand breaking agent, but did not protect DNA from daunorubicin-induced DNA strand breaking. Agaricus blazei water extract inhibited DNA strand breaking action of daunorubicin not only by daunorubicin inactivation, but also by DNA protection from daunorubicin. An inhibitory effect of Ganoderma lucidum water extract on the DNA strand break was based on the DNA protection rather than daunorubicin inactivation. In vivo mutagen assay system (SOS-chromotest), among three mushroom water extracts Phellinus linteus water extract was the most effective one on the inhibition of DNA damage by 4-NQO. The results suggest that all three mushroom water extracts inhibit daunorubicin-induced DNA damage and in vivo DNA damaging action of 4-NQO by the reaction of mutagen inactivation or DNA protection from the mutagen.

  • PDF

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

Application of Single Cell Gel Electrophoresis for Detection of DNA Single Strand Breaks in DNA of Fish Blood Cell (어류혈구세포에 있어서 Single Cell Gel Electrophoresis를 응용한 DNA Single Strand Breack의 측정)

  • KIM Gi Beum;LEE Richard F.;MARUYA Keith A.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.346-351
    • /
    • 2003
  • Single-cell gel electrophoresis (comet assay) was used to detect DNA single strand break in blood cells from several marine fish species. Three fish species were collected from Georgia coastal area. Mummichog, Fundulus heteroclitus showed higher DNA damage than sea bass, Lateolabrax japonicus and trout, Oncorhynchus masou masou under the same experimental conditions. Mummichogs had more alkaline-labile sites on their DNA than other fish species. The comet assay with mummichog blood cells at pH 12.5 showed a dose-response curve with the increasing concentrations of hydrogen peroxide. While the isolated leucocytes showed no increase of DNA damage after in vitro exposure to 2-methyl-1,4-naphthoquinone (MNQ), erythrocytes showed dose-dependent DNA damage. These results indicate that the comet assay can be applied successfully as a bioassay using erythrocyte for environmental monitoring.

Quantitative Analysis of DNA Single-strand Breaks in EL 4 cells and Mouse Spleen Lymphocytes after Irradiation (방사선에 의한 EL 4 백서 백혈병 세포 및 정상 백서 비장 임파구 DNA Single-Strand Breaks의 정량적 분석과 측정)

  • Yoo Seong Yul;Cho Chul Koo;Koh Kyung Hwan;Park Woo Yoon;Park Young Hwan;Kim Sung Ho;Kim Tae Hwan;Chung In Yong
    • Radiation Oncology Journal
    • /
    • v.8 no.2
    • /
    • pp.137-144
    • /
    • 1990
  • The filter elution technique was used to assay Co-60 $\gamma$ ray-induced DNA single-strand breaks(SSB) in EL 4 mouse leukemia cell and mouse spleen lymphocyte. The lymphocytes were stimulated with lipopolysaccharide (LPS, 20 $\mug/ml$) to label [${^3}H$] thymidine. EL 4 cells and lymphocytes in suspension were exposed at $0^{\circ}C$ to 0 Gy, 1 Gy, 5 Gy,10 Gy of Co-60 radiation and elution procedure was performed at PH 12.1. The number of DNA single-strand breaks increased with increasing doses of $\gamma$ rays. The strand scission factor (SSF) was estimated in each experiment (eluted volume 21 ml). The slope for EL 4 cells was $0.01301\pm0.00096\;Gy^{-1}(n=5)$ and the slope for lymphocytes was $0.01097\pm0.00091\;Gy^{-1}(n=5)$. The slopes were significantly different (P<0.005). Thus EL 4 cells were more sensitive to induction of DNA SSB by ionizing radiation than lymphocytes.

  • PDF

DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair

  • Ye-Rim Lee;Gi-Sue Kang;Taerim Oh;Hye-Ju Jo;Hye-Joon Park;G-One Ahn
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.200-205
    • /
    • 2023
  • DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family is a well-known player in repairing DNA double-strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to the severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in an attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.

Studies on DNA Single Strand Break of Seven Phthalate Analogues in Mouse Lymphoma L5178Y Cells

  • Ryu, Jae-Chun;Kim, Hyung-Tae;Kim, Youn-Jung
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.164-168
    • /
    • 2002
  • Phthalate analogues are a plasticizer and solvent used in industry and were reported to be a potential carcinogen classified in the category of suspected endocrine disruptors. Most common human exposure to these compounds may occur with contaminated food. They may migrate into food from plastic wrap or may enter food from general environmental contamination. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of phthalates that possibly threaten the public health. To determine whether seven phthalate analogues i.e. diallyl phthalate, diisodecyl phthalate, di-n-nonyl phthalate, butyl benzyl phthalate, di-n-octyl phthalate, di-tridecyl phthalate, and dibutyl phthalate, can induce DNA strand breakage that is one of the various factors related to the mechanism of carcinogenicity, the comet assay which has been widely used for the detection and measurement of DNA strand breaks, was conducted in L5178Y mouse lymphoma cells. From these results, seven phthalates revealed dose-dependent decrease of cell viability, however, no remarkable cytotoxicity was observed even at high concentration of 100 $\mu\textrm{g}$/$m\ell$ phthalates. And also, the results showed that the induction of DNA strand breaks by seven phthalates was not significantly different from the control in this study.

  • PDF

DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

  • Park, Sojin;Choi, Seoyun;Ahn, Byungchan
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.204-210
    • /
    • 2016
  • DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.

Evaluation of DNA Double Strand Breaks in Human and Mouse Lymphocyte Following ${\gamma}-Irradiation$ (${\gamma}-Ray$ 조사에 따른 사람의 정상임파구와 마우스 정상임파구의 DNA Double Strand Break 발생율에 대한 비교분석)

  • Kim Tae Hwan;Kim Sung Ho;Chung In Yong;Cho Chul Koo;Ko Kyung Hwan;Yoo Seong Yul
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.219-225
    • /
    • 1993
  • The evaluation of radiation-induced DNA double strand breaks (DSB) was made following irradiation of human lymphocytes, murine lymphocytes and EL-4 leukemia cells over a wide dose range of $^{60}Co\;{gamma}-rays.$ In lipopolysaccharide (LPS) or phytohemagglutinin (PHA)-stimulated murine lymphocytes, the slopes of the stand scission factor (SSF) revealed that lymphocytes with LPS increased DNA DSB formation by a factor of 1.432 (p<0.005). Furthermore, strand break production was relatively inefficient in the T lymphocytes compared to the B lymuhocytes. And EL-4 leukemia cells were found to form significantly more DNA DSB to a greater extent than normal lymphocytes (p<0.005). The in vitro studies of the intrinsic radiosensitivity between human lymphocytes and murine lymphocytes showed similar phasic kinetics. However, murine lymphocytes were lower in DNA DSB formation and higher in the relative radiation dose of 10 percent DNA strand breaks at 3.5 hours following ${gamma}-irradiation$ than human lymphocytes. Though it is difficult to interpret these results, these differences may be result from environmental and genetic factors. From our data, if complementary explanations for this difference will be proposed, the differences in the dose-effect relationship for the induction of DSB between humans and mice must be related to interspecies variations in the physiological condition of the peripheral blood in vitro and not to differences in the intrinsic radiation sensitivity of the lymphocytes. These results can be estimated on the basis of dose-effect correlation enabling the interpretation of clinical response and the radiobiological parameters of cytometrical assessment.

  • PDF

Mec1 Modulates Interhomolog Crossover and Interplays with Tel1 at Post Double-Strand Break Stages

  • Lee, Min-Su;Joo, Jung Whan;Choi, Hyungseok;Kang, Hyun Ah;Kim, Keunpil
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.469-475
    • /
    • 2020
  • During meiosis I, programmed DNA double-strand breaks (DSBs) occur to promote chromosome pairing and recombination between homologs. In Saccharomyces cerevisiae, Mec1 and Tel1, the orthologs of human ATR and ATM, respectively, regulate events upstream of the cell cycle checkpoint to initiate DNA repair. Tel1ATM and Mec1ATR are required for phosphorylating various meiotic proteins during recombination. This study aimed to investigate the role of Tel1ATM and Mec1ATR in meiotic prophase via physical analysis of recombination. Tel1ATM cooperated with Mec1ATR to mediate DSB-to-single end invasion transition, but negatively regulated DSB formation. Furthermore, Mec1ATR was required for the formation of interhomolog joint molecules from early prophase, thus establishing a recombination partner choice. Moreover, Mec1ATR specifically promoted crossover-fated DSB repair. Together, these results suggest that Tel1ATM and Mec1ATR function redundantly or independently in all post-DSB stages.