DOI QR코드

DOI QR Code

DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair

  • Ye-Rim Lee (College of Veterinary Medicine, Seoul National University) ;
  • Gi-Sue Kang (College of Veterinary Medicine, Seoul National University) ;
  • Taerim Oh (College of Veterinary Medicine, Seoul National University) ;
  • Hye-Ju Jo (College of Veterinary Medicine, Seoul National University) ;
  • Hye-Joon Park (College of Veterinary Medicine, Seoul National University) ;
  • G-One Ahn (College of Veterinary Medicine, Seoul National University)
  • Received : 2022.10.31
  • Accepted : 2022.11.09
  • Published : 2023.04.30

Abstract

DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family is a well-known player in repairing DNA double-strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to the severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in an attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.

Keywords

Acknowledgement

This work was supported by the New Faculty Startup Fund from Seoul National University, the Research Institute for Veterinary Science, the Ministry of Science and Information, Communication, and Technology, Korea (RS-2022-00144495 and NRF-2020M2D9A2092374) and BK21 Four Future Veterinary Medicine Leading Education and Research Center, the Ministry of Education, Korea.

References

  1. Beamish, H.J., Jessberger, R., Riballo, E., Priestley, A., Blunt, T., Kysela, B., and Jeggo, P.A. (2000). The C-terminal conserved domain of DNA-PKcs, missing in the SCID mouse, is required for kinase activity. Nucleic Acids Res. 28, 1506-1513. https://doi.org/10.1093/nar/28.7.1506
  2. Bosma, G.C., Kim, J., Urich, T., Fath, D.M., Cotticelli, M.G., Ruetsch, N.R., Radic, M.Z., and Bosma, M.J. (2002). DNA-dependent protein kinase activity is not required for immunoglobulin class switching. J. Exp. Med. 196, 1483-1495. https://doi.org/10.1084/jem.20001871
  3. Brown, J.M. (2019). Beware of clinical trials of DNA repair inhibitors. Int. J. Radiat. Oncol. Biol. Phys. 103, 1182-1183. https://doi.org/10.1016/j.ijrobp.2018.11.063
  4. Chen, Y., Li, Y., Guan, Y., Huang, Y., Lin, J., Chen, L., Li, J., Chen, G., Pan, L.K., Xia, X., et al. (2020). Prevalence of PRKDC mutations and association with response to immune checkpoint inhibitors in solid tumors. Mol. Oncol. 14, 2096-2110. https://doi.org/10.1002/1878-0261.12739
  5. Davis, A.J., Chen, B.P.C., and Chen, D.J. (2014). DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst.) 17, 21-29. https://doi.org/10.1016/j.dnarep.2014.02.020
  6. Dragoi, A.M., Fu, X., Ivanov, S., Zhang, P., Sheng, L., Wu, D., Li, G.C., and Chu, W.M. (2005). DNA-PKcs, but not TLR9, is required for activation of Akt by CpG-DNA. EMBO J. 24, 779-789. https://doi.org/10.1038/sj.emboj.7600539
  7. Dvir, A., Peterson, S.R., Knuth, M.W., Lu, H., and Dynan, W.S. (1992). Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 89, 11920-11924. https://doi.org/10.1073/pnas.89.24.11920
  8. Dylgjeri, E., Kothari, V., Shafi, A.A., Semenova, G., Gallagher, P.T., Guan, Y.F., Pang, A., Goodwin, J.F., Irani, S., McCann, J.J., et al. (2022). A novel role for DNA-PK in metabolism by regulating glycolysis in castration-resistant prostate cancer. Clin. Cancer Res. 28, 1446-1459. https://doi.org/10.1158/1078-0432.CCR-21-1846
  9. Fok, J.H.L., Ramos-Montoya, A., Vazquez-Chantada, M., Wijnhoven, P.W.G., Follia, V., James, N., Farrington, P.M., Karmokar, A., Willis, S.E., Cairns, J., et al. (2019). AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat. Commun. 10, 5065.
  10. Goodwin, J.F. and Knudsen, K.E. (2014). Beyond DNA repair: DNA-PK function in cancer. Cancer Discov. 4, 1126-1139. https://doi.org/10.1158/2159-8290.CD-14-0358
  11. Hardcastle, I.R., Cockcroft, X., Curtin, N.J., El-Murr, M.D., Leahy, J.J.J., Stockley, M., Golding, B.T., Rigoreau, L., Richardson, C., Smith, G.C.M., et al. (2005). Discovery of potent chromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK) using a small-molecule library approach. J. Med. Chem. 48, 7829-7846. https://doi.org/10.1021/jm050444b
  12. Jackson, S.P., MacDonald, J.J., Lees-Miller, S., and Tjian, R. (1990). GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell 63, 155-165. https://doi.org/10.1016/0092-8674(90)90296-Q
  13. Ju, B.G., Lunyak, V.V., Perissi, V., Garcia-Bassets, I., Rose, D.W., Glass, C.K., and Rosenfeld, M.G. (2006). A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798-1802. https://doi.org/10.1126/science.1127196
  14. Kim Wiese, A., Schluterman Burdine, M., Turnage, R.H., Tackett, A.J., and Burdine, L.J. (2017). DNA-PKcs controls calcineurin mediated IL-2 production in T lymphocytes. PLoS One 12, e0181608.
  15. Lee, Y.J., Lee, J.B., Ha, S.J., and Kim, H.R. (2021). Clinical perspectives to overcome acquired resistance to anti-programmed death-1 and anti-programmed death ligand-1 therapy in non-small cell lung cancer. Mol. Cells 44, 363-373. https://doi.org/10.14348/molcells.2021.0044
  16. Ma, C., Muranyi, M., Chu, C.H., Zhang, J., and Chu, W.M. (2013). Involvement of DNA-PKcs in the IL-6 and IL-12 response to CpG-ODN is mediated by its interaction with TRAF6 in dendritic cells. PLoS One 8, e58072.
  17. Ma, Y., Pannicke, U., Schwarz, K., and Lieber, M.R. (2002). Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781-794. https://doi.org/10.1016/S0092-8674(02)00671-2
  18. Manis, J.P., Dudley, D., Kaylor, L., and Alt, F.W. (2002). IgH class switch recombination to IgG1 in DNA-PKcs-deficient B cells. Immunity 16, 607-617. https://doi.org/10.1016/S1074-7613(02)00306-0
  19. Medunjanin, S., Weinert, S., Schmeisser, A., Mayer, D., and Braun-Dullaeus, R.C. (2010). Interaction of the double-strand break repair kinase DNA-PK and estrogen receptor-α. Mol. Biol. Cell 21, 1620-1628. https://doi.org/10.1091/mbc.e09-08-0724
  20. Menolfi, D. and Zha, S. (2020). ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition≠deletion. Cell Biosci. 10, 8.
  21. Mohiuddin, I.S. and Kang, M.H. (2019). DNA-PK as an emerging therapeutic target in cancer. Front. Oncol. 9, 635.
  22. Morales, A.J., Carrero, J.A., Hung, P.J., Tubbs, A.T., Andrews, J.M., Edelson, B.T., Calderon, B., Innes, C.L., Paules, R.S., Payton, J.E., et al. (2017). A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages. Elife 6, e24655.
  23. Nakamura, K., Karmokar, A., Farrington, P.M., James, N.H., Ramos-Montoya, A., Bickerton, S.J., Hughes, G.D., Illidge, T.M., Cadogan, E.B., Davies, B.R., et al. (2021). Inhibition of DNA-PK with AZD7648 sensitizes tumor cells to radiotherapy and induces type I IFN-dependent durable tumor control. Clin. Cancer Res. 27, 4353-4366. https://doi.org/10.1158/1078-0432.CCR-20-3701
  24. Park, S.J., Gavrilova, O., Brown, A.L., Soto, J.E., Bremner, S., Kim, J., Xu, X., Yang, S., Um, J.H., Koch, L.G., et al. (2017). DNA-PK promotes the mitochondrial, metabolic, and physical decline that occurs during aging. Cell Metab. 25, 1135-1146.e7. https://doi.org/10.1016/j.cmet.2017.04.008
  25. Rolink, A., Melchers, F., and Andersson, J. (1996). The SCID but not the RAG-2 gene product is required for Sµ-Sε heavy chain class switching. Immunity 5, 319-330. https://doi.org/10.1016/S1074-7613(00)80258-7
  26. Roth, D.B. (2014). V(D)J recombination: mechanism, errors, and fidelity. Microbiol. Spectr. 2, 10.1128/microbiolspec.MDNA3-0041-2014.
  27. Sun, X., Liu, T., Zhao, J., Xia, H., Xie, J., Guo, Y., Zhong, L., Li, M., Yang, Q., Peng, C., et al. (2020). DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Nat. Commun. 11, 6182.
  28. Taccioli, G.E., Amatucci, A.G., Beamish, H.J., Gell, D., Xiang, X.H., Arzayus, M.I.T., Priestley, A., Jackson, S.P., Rothstein, A.M., Jeggo, P.A., et al. (1998). Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 9, 355-366. https://doi.org/10.1016/S1074-7613(00)80618-4
  29. Van Triest, B., Damstrup, L., Falkenius, J., Budach, V., Troost, E., Samuels, M., Debus, J., Sorensen, M.M., Berghoff, K., Strotman, R., et al. (2018). A phase Ia/Ib trial of the DNA-PK inhibitor M3814 in combination with radiotherapy (RT) in patients (pts) with advanced solid tumors: dose-escalation results. J. Clin. Oncol. 36(15 Suppl), 2518.
  30. Waldrip, Z.J., Burdine, L., Harrison, D.K., Azevedo-Pouly, A.C., Storey, A.J., Moffett, O.G., Mackintosh, S.G., and Burdine, M.S. (2021). DNA-PKcs kinase activity stabilizes the transcription factor Egr1 in activated immune cells. J. Biol. Chem. 297, 101209.
  31. Wise, H.C., Iyer, G.V., Moore, K., Temkin, S.M., Gordon, S., Aghajanian, C., and Grisham, R.N. (2019). Activity of M3814, an oral DNA-PK inhibitor, in combination with topoisomerase II inhibitors in ovarian cancer models. Sci. Rep. 9, 18882.
  32. Wong, R.H.F., Chang, I., Hudak, C.S.S., Hyun, S., Kwan, H.Y., and Sul, H.S. (2009). A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136, 1056-1072. https://doi.org/10.1016/j.cell.2008.12.040
  33. Wong, W.W., Jackson, R.K., Liew, L.P., Dickson, B.D., Cheng, G.J., Lipert, B., Gu, Y., Hunter, F.W., Wilson, W.R., and Hay, M.P. (2019). Hypoxia-selective radiosensitisation by SN38023, a bioreductive prodrug of DNA-dependent protein kinase inhibitor IC87361. Biochem. Pharmacol. 169, 113641.
  34. Xie, Y., Liu, Y.K., Guo, Z.P., Guan, H., Liu, X.D., Xie, D.F., Jiang, Y.G., Ma, T., and Zhou, P.K. (2020). RBX1 prompts degradation of EXO1 to limit the homologous recombination pathway of DNA double-strand break repair in G1 phase. Cell Death Differ. 27, 1383-1397. https://doi.org/10.1038/s41418-019-0424-4
  35. Yang, H., Yao, F., Marti, T.M., Schmid, R.A., and Peng, R.W. (2020). Beyond DNA repair: DNA-PKcs in tumor metastasis, metabolism and immunity. Cancers (Basel) 12, 3389.
  36. Yang, Y., Lu, H., Chen, C., Lyu, Y., Cole, R.N., and Semenza, G.L. (2022). HIF-1 interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat. Commun. 13, 316.
  37. Yotsumoto, S., Saegusa, K., and Aramaki, Y. (2008). Endosomal translocation of CpG-oligodeoxynucleotides inhibits DNA-PKcs-dependent IL-10 production in macrophages. J. Immunol. 180, 809-816. https://doi.org/10.4049/jimmunol.180.2.809
  38. Yue, X., Bai, C., Xie, D., Ma, T., and Zhou, P.K. (2020). DNA-PKcs: a multifaceted player in DNA damage response. Front. Genet. 11, 607428.
  39. Zenke, F.T., Zimmermann, A., Sirrenberg, C., Dahmen, H., Kirkin, V., Pehl, U., Grombacher, T., Wilm, C., Fuchss, T., Amendt, C., et al. (2020). Pharmacologic inhibitor of DNA-PK, M3814, potentiates radiotherapy and regresses human tumors in mouse models. Mol. Cancer Ther. 19, 1091-1101. https://doi.org/10.1158/1535-7163.MCT-19-0734
  40. Zhang, W.W. and Matlashewski, G. (2019). Single-strand annealing plays a major role in double-strand DNA break repair following CRISPR-Cas9 cleavage in Leishmania. mSphere 4, e00408-19. https://doi.org/10.1128/mSphere.00408-19
  41. Zhao, Y., Thomas, H.D., Batey, M.A., Cowell, I.G., Richardson, C.J., Griffin, R.J., Calvert, A.H., Newell, D.R., Smith, G.C.M., and Curtin, N.J. (2006). Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res. 66, 5354-5362. https://doi.org/10.1158/0008-5472.CAN-05-4275