Browse > Article
http://dx.doi.org/10.4014/jmb.1909.09020

Mec1 Modulates Interhomolog Crossover and Interplays with Tel1 at Post Double-Strand Break Stages  

Lee, Min-Su (Department of Life Sciences, Chung-Ang University)
Joo, Jung Whan (Department of Life Sciences, Chung-Ang University)
Choi, Hyungseok (Department of Life Sciences, Chung-Ang University)
Kang, Hyun Ah (Department of Life Sciences, Chung-Ang University)
Kim, Keunpil (Department of Life Sciences, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.3, 2020 , pp. 469-475 More about this Journal
Abstract
During meiosis I, programmed DNA double-strand breaks (DSBs) occur to promote chromosome pairing and recombination between homologs. In Saccharomyces cerevisiae, Mec1 and Tel1, the orthologs of human ATR and ATM, respectively, regulate events upstream of the cell cycle checkpoint to initiate DNA repair. Tel1ATM and Mec1ATR are required for phosphorylating various meiotic proteins during recombination. This study aimed to investigate the role of Tel1ATM and Mec1ATR in meiotic prophase via physical analysis of recombination. Tel1ATM cooperated with Mec1ATR to mediate DSB-to-single end invasion transition, but negatively regulated DSB formation. Furthermore, Mec1ATR was required for the formation of interhomolog joint molecules from early prophase, thus establishing a recombination partner choice. Moreover, Mec1ATR specifically promoted crossover-fated DSB repair. Together, these results suggest that Tel1ATM and Mec1ATR function redundantly or independently in all post-DSB stages.
Keywords
Mec1; Tel1; meiosis; recombination; double-strand break;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514: 122-125.   DOI
2 Garcia V, Phelps SE, Gray S, Neale MJ. 2011. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479: 241-244.   DOI
3 Ribeiro J, Abby E, Livera G, Martini E. 2016. RPA homologs and ssDNA processing during meiotic recombination. Chromosoma 125: 265-276.   DOI
4 Sasanuma H, Tawaramoto MS, Lao JP, Hosaka H, Sanda E, Suzuki M, et al. 2013. A new protein complex promoting the assembly of Rad51 filaments. Nat. Commun. 4: 1676.   DOI
5 Hong S, Kim KP 2013. Shu1 promotes homolog bias of meiotic recombination in Saccharomyces cerevisiae. Mol. Cells 36: 446-454.   DOI
6 Borner GV, Kleckner N, Hunter N. 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117: 29-45.   DOI
7 Grushcow JM, Holzen TM, Park KJ, Weinert T, Lichten M, Bishop DK. 1999. Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 153: 607-620.   DOI
8 Thompson D, Stahl F 1999. Genetic control of recombination partner preference in yeast meiosis: isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 153: 621-641.   DOI
9 Carballo JA, Johnson AL, Sedgwick SG, Cha RS. 2008. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132: 758-770.   DOI
10 Traven A, Heierhorst J. 2005. SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays 27: 397-407.   DOI
11 Usui T, Ogawa H, Petrini JH. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7: 1255-1266.   DOI
12 Chuang CN, Cheng YH, Wang TF. 2012. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 40: 11416-11427.   DOI
13 Navadgi-Patil VM, Burgers PM. 2009. A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1. DNA Repair (Amst) 8: 996-1003.   DOI
14 Falck J, Coates J, Jackson SP 2005. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605-611   DOI
15 You Z, Chahwan C, Bailis J, Hunter T, Russell P. 2005. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell Biol. 25: 5363-5379.   DOI
16 Melo J, Toczyski D. 2002. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 14: 237-245.   DOI
17 Hong S, Sung Y, Yu M, Lee M, Kleckner N, Kim KP. 2013. The logic and mechanism of homologous recombination partner choice. Mol. Cell 51: 440-453.   DOI
18 Choi HJ, Kim YH. 2018. Simultaneous and sequential integration by Cre/loxP site-specific recombination in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 28: 826-830.   DOI
19 Jing H, Liu H, Zhang L, Gao J, Song H, Tan X. 2018. Ethanol induces autophagy regulated by mitochondrial ROS in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 28: 1982-1991.   DOI
20 Hunter N, Kleckner N. 2001. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106: 59-70.   DOI
21 Carr AM. 1997. Control of cell cycle arrest by the Mec1sc/Rad3sp DNA structure checkpoint pathway. Curr. Opin. Genet. Dev. 7: 93-98.   DOI
22 Lee MS, Yoon SW, Kim KP. 2015. Mitotic cohesin subunit Mcd1 regulates the progression of meiotic recombination in budding yeast. J. Microbiol. Biotechnol. 25: 598-605.   DOI
23 Lange J, Pan J, Cole F, Thelen MP, Jasin M, Keeney S. 2011. ATM controls meiotic double-strand-break formation. Nature 479: 237-240   DOI
24 Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ. 2015. Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 520: 114-118.   DOI
25 Zhang L, Kim KP, Kleckner NE, Storlazzi A 2011. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc. Natl. Acad. Sci. USA 108: 20036-20041.   DOI
26 Kato R, Ogawa 1994. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 22: 3104-3012.   DOI
27 Zhao X, Muller EG, Rothstein R 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2: 329-340.   DOI
28 Grenon M, Magill CP, Lowndes NF, Jackson SP. 2006. Double-strand breaks trigger MRX- and Mec1-dependent, but Tel1-independent, checkpoint activation. FEMS Yeast Res. 6: 836-847.   DOI
29 Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shioh Y. 2003. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22: 5612-5621.   DOI
30 Mohibullah N, Keeney S. 2017. Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome Res. 27: 278-288.   DOI
31 Beyer T, Weinert T. 2014. Mec1 and Tel1: an arresting dance of resection. EMBO J. 33: 176-178.   DOI
32 Lee BH, Amon A. 2003. Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300: 482-486.   DOI
33 Sanchez-Moran E, Santos JL, Jones GH, Franklin FC. 2007. ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev. 21: 2220-2233.   DOI
34 Jin H, Guacci, V, Yu HG. 2009. Pds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis. J. Cell Biol. 186: 713-725.   DOI
35 Yoon SW, Lee MS, Xaver M, Zhang L, Hong SG, Kong YJ, et al. 2016. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res. 44: 9296-9314.   DOI
36 Hong S, Joo JH, Yun H, Kim K. 2019. The nature of meiotic chromosome dynamics and recombination in budding yeast. J. Microbiol. 57: 221-231.   DOI
37 Kleckner N, Zhang L, Weiner B, Zickler D. 2011. In genome organization and function in the cell nucleus, Chapter 19, K. Rippe, ed. (Weinheim, Germany: Wiley-VCH).
38 Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N. 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143: 924-937.   DOI
39 Lao JP, Hunter N. 2010. Trying to avoid your sister. PLoS Biol. 8: e1000519   DOI
40 Keeney S, Giroux C, Kleckner N. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375-384.   DOI
41 Keeney S. 2001. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52: 1-53.   DOI
42 Murakami H, Keeney S. 2008. Regulating the formation of DNA double-strand breaks in meiosis. Genes Dev. 22: 286-292.   DOI
43 Neale MJ, Pan J, Keeney S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436: 1053-1057.   DOI