• Title/Summary/Keyword: Strain-relaxed SiGe

Search Result 7, Processing Time 0.026 seconds

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

Strain conservation in implantation -doped GeSi layers on Si(100)

  • Im, S.;Nicolet, M.A.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.47-52
    • /
    • 1997
  • Metastable pseudomorphic GeSi layers grown by vapor phase epitaxy on Si(100) substrates were implanted at room temperature. The implantations were performed with 90 KeV As ions to a dose of $1\times 10^{13}\;\textrm{cm}^2$ for $Ge_{0.08}Si_{0.92}$ layers and 709 keV $BF_2^+$ ions to a dose of $3\times 10^{13}\;\textrm{cm}^2$ for $Ge_{0.06}Si_{0.94}$layers. The samples were subsequently annealed for short 10-40 s durations in a lamp furnace with a nitrogen ambient or for a long 30 min period in a vacuum tube furnace. For $Ge_{0.08}Si_{0.92}$samples annealed for a 30 min-longt duration at $700^{\circ}C$ the dopant activation can only reach 50% without introducing significant strain relaxaion whereas samples annealed for short 40s periods (at $850^{\circ}C$) can achieve more than 90% activation without a loss of strain, For $Ge_{0.06}Si_{0.94}$samples annealed for either 40s or 30min at $800^{\circ}C$ full electrical activation of the boron is exhibited in the GeSi epilayer without losing their strain. However when annealed at $900^{\circ}C$ the strain in both implanted and unimplanted layers is partly relaxed after 30min whereas it is not visibly relaxed after 40s.

  • PDF

Hole Mobility Characteristics of Biaxially Strained SiGe/Si Channel Structure with High Ge Content (고농도의 Ge 함량을 가진 Biaxially Strained SiGe/Si Channel Structure의 정공 이동도 특성)

  • Jung, Jong-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.44-48
    • /
    • 2008
  • Hole mobility characteristics of two representative biaxially strained SiGe/Si structures with high Ge contents are studied, They are single channel ($Si/Si_{1-x}Ge_x/Si$ substrate) and dual channel ($Si/Si_{1-y}Ge_y/Si_{1-x}Ge_x/Si$ substrate), where the former consists of a relaxed SiGe buffer layer with 60 % Ge content and a tensile-strained Si layer on top, and for the latter, a compressively strained SiGe layer is inserted between two layers, Owing to the hole mobility performance between a relaxed SiGe film and a compressive-strained SiGe film in the single channel and the dual channel, the hole mobility behaviors of two structures with respect to the Si cap layer thickness shows the opposite trend, Hole mobility increases with thicker Si cap layer for single channel structure, whereas it decreases with thicker Si cap layer for dual channel. This hole mobility characteristics could be easily explained by a simple capacitance model.

An Analytical Model for the Threshold Voltage of Short-Channel Double-Material-Gate (DMG) MOSFETs with a Strained-Silicon (s-Si) Channel on Silicon-Germanium (SiGe) Substrates

  • Bhushan, Shiv;Sarangi, Santunu;Gopi, Krishna Saramekala;Santra, Abirmoya;Dubey, Sarvesh;Tiwari, Pramod Kumar
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.367-380
    • /
    • 2013
  • In this paper, an analytical threshold voltage model is developed for a short-channel double-material-gate (DMG) strained-silicon (s-Si) on silicon-germanium ($Si_{1-X}Ge_X$) MOSFET structure. The proposed threshold voltage model is based on the so called virtual-cathode potential formulation. The virtual-cathode potential is taken as minimum channel potential along the transverse direction of the channel and is derived from two-dimensional (2D) potential distribution of channel region. The 2D channel potential is formulated by solving the 2D Poisson's equation with suitable boundary conditions in both the strained-Si layer and relaxed $Si_{1-X}Ge_X$ layer. The effects of a number of device parameters like the Ge mole fraction, Si film thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been analyzed for gate-length ratio and amount of strain variations. The validity of the present 2D analytical model is verified with ATLAS$^{TM}$, a 2D device simulator from Silvaco Inc.

A MEIS Study on Ge Eppitaxial Growth on Si(001) with dynamically supplied Atomic Hydrogen

  • Ha, Yong-Ho;Kahng, Se-Jong;Kim, Se-Hun;Kuk, Young;Kim, Hyung-Kyung;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.156-157
    • /
    • 1998
  • It is a diffcult and challenging pproblem to control the growth of eppitaxial films. Heteroeppitaxy is esppecially idfficult because of the lattice mismatch between sub-strate and depposited layers. This mismatch leads usually to a three dimensional(3D) island growth. But the use of surfactants such as As, Sb, and Bi can be beneficial in obtaining high quality heteroeppitaxial films. In this study medium energy ion scattering sppectroscoppy(MEIS) was used in order to reveal the growth mode of Ge on Si(001) and the strain of depposited film without and with dynamically supplied atomic hydrogen at the growth thempperature of 35$0^{\circ}C$. It was ppossible to control the growth mode from layer-by-layer followed by 3D island to layer-by-layer by controlling the hydrogen flux. In the absent of hydro-gen the film grows in the layer-by-layer mode within the critical thickness(about 3ML) and the 3D island formation is followed(Fig1). The 3D island formation is suppressed by introducing hydrogen resulting in layer-by-layer growth beyond the critical thickness(Fig2) We measured angular shift of blocking dipp in order to obtain the structural information on the thin films. In the ppressence of atomic hydrogen the blocking 야 is shifted toward higher scattering angle about 1。. That means the film is distorted tetragonally and strained therefore(Fig4) In other case the shift of blocking dipp at 3ML is almost same as pprevious case. But above the critical thickness the pposition of blocking dipp is similar to that of Si bulk(Fig3). It means the films is relaxed from the first layer. There is 4.2% lattice mismatch between Ge and Si. That mismatch results in about 2。 shift of blocking dipp. We measured about 1。 shift. This fact could be due to the intermixing of Ge and Si. This expperimental results are consistent with Vegard's law which says that the lattice constant of alloys is linear combination of the lattic constants of the ppure materials.

  • PDF

Performance of Capacitorless 1T-DRAM Using Strained-Si Channel Effect

  • Jeong, Seung-Min;O, Jun-Seok;Kim, Min-Su;Jeong, Hong-Bae;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.130-130
    • /
    • 2011
  • 최근 반도체 메모리 산업의 발전과 동시에 발생되는 문제들을 극복하기 위한 새로운 기술들이 요구되고 있다. DRAM (dynamic random access memory) 의 경우, 소자의 크기가 수십 나노미터 영역으로 줄어들면서, 단채널 효과에 의한 누설전류와 소비전력의 증가 등이 문제가 되고 있다. 하나의 캐패시터와 하나의 트랜지스터로 구성된 기존의 DRAM은, 소자의 집적화가 진행 되어 가면서 정보저장 능력이 감소하는 것을 개선하기 위해, 복잡한 구조의 캐패시터 영역을 요구한다. 이에 반해 하나의 트랜지스터로 구성되어 있는 1T-DRAM의 경우, 캐패시터 영역이 없는 구조적인 이점과, SOI (silicon-on-insulator) 구조의 기판을 사용함으로써 뛰어난 전기적 절연 특성과 기생 정전용량의 감소, 그리고 기존 CMOS (complementary metal oxide semiconductor) 공정과의 호환성이 장점이다. 또한 새로운 물질 혹은 구조를 적용하여, 개선된 전기적 특성을 통해 1T-DRAM의 메모리 특성을 향상 시킬 수 있다. 본 연구에서는, SOI와 SGOI (silicon-germanium-on-insulator) 및 sSOI (strained-si-on-insulator) 기판을 사용한 MOSFET을 통해, strain 효과에 의한 전기적 특성 및 메모리 특성을 평가 하였다. 그 결과 strained-Si층과 relaxed-SiGe층간의 tensile strain에 의한 캐리어 이동도의 증가를 통해, 개선된 전기적 특성 및 메모리 특성을 확인하였다. 또한 채널층의 결함이 적은 sSOI 기판을 사용한 1T-DRAM에서 가장 뛰어난 특성을 보였다.

  • PDF

Interface study of ion irradiated Cu/Ni/Cu(001)/Si thin film by X-ray reflectivity (이온 조사된 Cu/Ni/Cu(001)/Si 자성박막에 있어서 X-ray reflectivity를 이용한 계면 연구)

  • Kim, T.G.;Song, J.H.;Lee, T.H.;Chae, K.H.;Hwang, H.M.;Jeon, G.Y.;Lee, J;Jeong, K.;Whang, C.N.;Lee, J.S.;Lee, K.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.184-188
    • /
    • 2002
  • The Cu/Ni/Cu(002)/Si(100) films which have perpendicular magnetic anisotropy were deposited by e-beam evaporation methods. From the reflection high energy electron diffraction pattern, the films were confirmed to be grown epitaxially on silicon. After 2X lots ions/$\textrm{cm}^2$ C+ irradiation, magnetic easy-axis was changed from surface normal to in-plane as shown in the hysteresis loop of magneto-optical Kerr effects. It became manifest from analysis of X-ray reflectivity and grazing incident X-ray diffraction that even though interface between top Cu layer and Ni layer became rougher, the contrast of Cu and Ni's electron density became manifest after ion irradiation. In addition, the strain after deposition of the films was relaxed after ion irradiation. Strain relaxation related with change of magnetic properties and mechanism of intermixed layer's formation was explained by thermo-chemical driving force due to elastic and inelastic collision of ions.