• Title/Summary/Keyword: Strain-control

Search Result 2,275, Processing Time 0.028 seconds

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.

Biological Efficacy of Endophytic Bacillus velezensis CH-15 from Ginseng against Ginseng Root Rot Pathogens (인삼내생균 Bacillus velezensis CH-15의 인삼뿌리썩음병 방제 효과)

  • Kim, Dohyun;Li, Taiying;Lee, Jungkwan;Lee, Seung-Ho
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Ginseng is an important medicinal plant cultivated in East Asia for thousands of years. It is typically cultivated in the same field for 4 to 6 years and is exposed to a variety of pathogens. Among them, ginseng root rot is the main reason that leads to the most severe losses. In this study, endophytic bacteria were isolated from healthy ginseng, and endophytes with antagonistic effect against ginseng root rot pathogens were screened out. Among the 17 strains, three carried antagonistic effect, and were resistant to radicicol that is a mycotoxin produced by ginseng root rot pathogens. Finally, Bacillus velezensis CH-15 was selected due to excellent antagonistic effect and radicicol resistance. When CH-15 was inoculated on ginseng root, it not only inhibited the mycelial growth of the pathogen, but also inhibited the progression of disease. CH-15 also carried biosynthetic genes for bacillomycin D, iturin A, bacilysin, and surfactin. In addition, CH-15 culture filtrate significantly inhibited the growth and conidial germination of pathogens. This study shows that endophytic bacterium CH-15 had antagonistic effect on ginseng root rot pathogens and inhibited the progression of ginseng root rot. We expected that this strain can be a microbial agent to suppress ginseng root rot.

Mutation of rpsL Gene in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 3 Strains Isolated from Korea (국내에서 분리된 Streptomycin 저항성 Pseudomonas syringae pv. actinidiae Biovar 3 균주에서 rpsL 유전자의 돌연변이)

  • Lee, Young Sun;Kim, Gyoung Hee;Koh, Young Jin;Jung, Jae Sung
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.26-31
    • /
    • 2022
  • Pseudomonas syringae pv. actinidiae (Psa) is the causal agent responsible for the bacterial canker disease of kiwifruit plants. Psa strains are divided into five different biovars based on genetic and biochemical characteristics. Among them, biovar 2 and 3 strains of Psa were isolated and have been causing widespread damages in Korea. One of the most effective ways to control Psa is to use an antibiotic such as streptomycin. However, Psa strains resistant to this antibiotic were isolated in Korea, and an earlier study revealed that the resistance in the biovar 2 is associated with strA-strB genes. This study aimed to determine the molecular resistance mechanism of Psa biovar 3 strains to streptomycin. Sequencing the rpsL gene encoding ribosomal protein S12 from three streptomycin-resistant strains screened in the laboratory revealed that a spontaneous mutation occurred either at codon 43 or 88. Meanwhile, in four streptomycin-resistant strains of Psa biovar 3 isolated from two kiwifruit orchards, a single nucleotide in codon 43 of the rpsL, which is AAA in streptomycin-sensitive strain, was substituted for AGA causing an amino acid change from lysine to arginine. The resistant mechanism in all biovar 3 strains obtained in Korea was identified as a mutation of the rpsL gene.

Development and Verification of Large Triaxial Testing System for Dynamic Properties of Granular Materials (조립재료 동적물성 산정을 위한 대형삼축압축시험장비 구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Choo, Yun-Wook;Lee, Sei-Hyun;Kang, Tae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.5-17
    • /
    • 2010
  • Coarse granular material is used as important fill material in most of large embankments such as railway, road, dam and so on. Therefore, the accurate design parameters of the coarse granular material are necessarily required in design and construction. The behavior of the coarse granular material was not well understood because of the lack of large testing equipment capable of coarse granular material. A large triaxial testing system was developed in this research, capable of large specimens of 500 mm, 300 mm and 150 mm in diameter. In the new large triaxial testing system, the load cell is installed inside the triaxial cell and axial displacement is measured locally on a specimen in order to improve control and measurement in small strain level. Urethane specimens of 300 mm and 50 mm in diameter were prepared. The large triaxial tests were performed on the 300 mm diameter urethane specimens while RC/TS and impact echo tests on the 50 mm diameter urethane specimens to verify this testing system. In this verification test results, we could ascertain the reasonable test results of the KRRI large triaxial testing system.

Structural Static Test of Pylon for External Attachment Separation Load (외부장착물 분리하중에 대한 파일런 구조 정적시험)

  • Kim, Hyun-gi;Kim, Sungchan;Hong, Seung-ho;Choi, Hyun-kyung;Cho, Sang-hwan;Park, Hyung-bae
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.104-109
    • /
    • 2022
  • The bomb rack unit (BRU) installed inside the pylon serves to fix external attachments such as external fuel tank or external weapon, and also serves to separate external attachments in case of emergency. In particular, the load generated when the external attachment is separated from the BRU is called the punching load. In this study, we present the results of a structural static test performed to verify the structural integrity of the pylon under the BRU punching condition acting on it. In the structural static test report, we present the implementation method for the separation load of the external attachment and the test profile for the BRU punching load condition, and compared the error between the load input signal and the feed-back signal to determine the appropriateness of load control in each test. Furthermore, we compared the strain results obtained in the numerical analysis and structural test at the main positions of the specimen. As a result, it was shown that the load of the actuators were properly controlled within the allowable error range in each test, and the numerical analysis effectively predicted the test result. Finally, through structural static tests conducted by design limit load and design ultimate load, we verified that the aircraft pylon dealt with in this study has sufficient structural strength for external attachment separation condition.

Structural Static Test for Validation of Structural Integrity of Fuel Pylon under Flight Load Conditions (비행하중조건에서 연료 파일런의 구조 건전성 검증을 위한 구조 정적시험)

  • Kim, Hyun-gi;Kim, Sungchan;Choi, Hyun-kyung;Hong, Seung-ho;Kim, Sang-Hyuck
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-103
    • /
    • 2022
  • An aircraft component can only be mounted on an aircraft if it has been certified to have a structural robustness under flight load conditions. Among the major components of the aircraft, a pylon is a structure that connects external equipment such as an engine, and external attachments with the main wing of an aircraft and transmits the loads acting on it to the main structure of the aircraft. In civil aircraft, when there is an incident of fire in the engine area, the pylon prevents the fire from spreading to the wings. This study presents the results of structural static tests performed to verify the structural robustness of a fuel pylon used to mount external fuel tank in an aircraft. In the main text, we present the test set-up diagram consisting of test fixture, hydraulic pressure unit, load control system, and data acquisition equipment used in the structure static test of the fuel pylon. In addition, we introduce the software that controls the load actuator, and provide a test profile for each test load condition. As a result of the structural static test, it was found that the load actuator was properly controlled within the allowable error range in each test, and the reliability of the numerical analysis was verified by comparing the numerical analysis results and the strain obtained from the structural test at the main positions of the test specimen. In conclusion, it was proved that the fuel pylon covered in this study has sufficient structural strength for the required load conditions through structural static tests.

Bioconversion of Isoflavone and Soyasaponin in the Fermentation of Soy Embryo Using Lactic Acid Bacteria (콩배아의 Lactobacillus plantarum 발효에 의한 이소플라본과 소야사포닌 변화)

  • Lee, Mi Ja;Park, Song Yi;Lee, Kwang sik;Kim, Hyun young;Ra, Ji Eun;Ham, Hyeon Mi
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.209-216
    • /
    • 2019
  • The effects of fermentation on soy embryo have been investigated using lactic acid bacteria, Lactobacillus acidophilus (LA), Lactobacillus bulgaricus (LB), Streptococcus thermophilussei (ST), and Lactobacillus plantarum (LP). As a result of the fermentation test of the isoflavone conversion by strain type, inoculation content, and fermentation time, the optimum conditions were LP bacterium, an inoculum amount of 5%, and a fermentation time of 24 hours. The composition of the isoflavone glycosides in the control was the highest in the order of glycitin> daidzin> genistin. When fermented with lactic acid bacteria, glycoside content decreased, and aglycone content increased. The order of composition was daidzein>glycitein>genistein. In the fermentation with LP bacterium, soyasaponin Ab content decreased and Ba and Bb content increased. Upon assessing the result of the experiment, it was found that the pH of the fermentation broth had a great influence in the bioconversion of isoflavone and soyasaponin. In the case of fermentation by pH 6 broth, aglycone and Bb content was the highest. The increase of aglycone content by fermentation reaction with the LP bacterium can increase the physiological activity and functionalization of soy embryo, which is a byproduct of processing.

Analysis of whole genome sequencing and virulence factors of Vibrio vulnificus 1908-10 isolated from sea water at Gadeok island coast

  • Hee-kyung Oh;Nameun Kim;Do-Hyung Kim;Hye-Young Shin;Eun-Woo Lee;Sung-Hwan Eom;Young-Mog Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.9
    • /
    • pp.558-568
    • /
    • 2023
  • Vibrio vulnificus is an aquatic bacterium causing septicemia and wound infection in humans. To understand this pathogen at the genomic level, it was performed whole genome sequencing of a cefoxitin-resistant strain, V. vulnificus 1908-10 possessing virulence-related genes (vvhA, viuB, and vcgC) isolated from Gadeok island coastal seawater in South Korea. The genome of V. vulnificus 1908-10 consisted of two circular contigs and no plasmid. The total genome size was estimated to be 5,018,425 bp with a guanine-cytosine (GC) content of 46.9%. We found 119 tRNA and 34 rRNA genes respectively in the genome, along with 4,352 predicted protein sequences. Virulence factor (VF) analysis further revealed that V. vulnificus 1908-10 possess various virulence genes in classes of adherence, antiphagocytosis, chemotaxis and motility, iron uptake, quorum sensing, secretion system, and toxin. In the comparison of the presence/absence of virulence genes, V. vulnificus 1908-10 had fur, hlyU, luxS, ompU, pilA, pilF, rtxA, rtxC, and vvhA. Of the 30 V. vulnificus comparative strains, 80% of the C-genotype strains have all of these genes, whereas 40% of the E-genotype strains have all of them. In particular, pilA were identified in 80% of the C-type strains and 40% of the E-type strains, showing more difference than other genes. Therefore, V. vulnificus 1908-10 had similar VF characteristics to those of type C strains. Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin of V. vulnificus 1908-10 contained 8 A-type repeats (GXXGXXXXXG), 25 B.1-type repeats (TXVGXGXX), 18 B2-type repeats (GGXGXDXXX), and 7 C-type repeats (GGXGXDXXX). The National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) showed that the RtxA protein of V. vulnificus 1908-10 had the effector domain in the order of cross-liking domain (ACD)-C58_PaToxP-like domain- α/β hydrolase-C58_PaToxP-like domain.

Optimization of mixing ratio of Polygala tenuifolia, Angelica dahurica and Elsholtzia splendens extracts for cosmetic material development (화장품 소재 개발을 위한 원지 (Polygala tenuifolia), 백지(Angelica dahurica) 및 꽃향유 (Elsholtzia splendens) 추출물의 혼합 비율 최적화)

  • Jung Seo A;Song, Ga Hyeon;Su In Park;Jung, Youn Ok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.993-1000
    • /
    • 2023
  • Recently, enviromentally friendly natural substances derived from plants have been attracting attention as cosmetic materials, and research on various physiological activities of natural substances is being actively conducted. This study investigated the antioxidant, anti-inflammatory, moisturizing, and antibacterial effects of three types of extracts of mixtures containing different mixing ratios, Polygala tenuifolia, Angelica dahurica, and Elsholtzia splendens, known to have various physiological activities. The mixing ratio is 7 conditions (M1, 1:1:1; M2, 0.5:1.5:1; M3, 1.5:0.5:1; M4, 0.1:0.95:0.95; M5, 0.5:0.5:2; M6, 0.95 :1.95:0.1; M7, 1.45:0.1:1.45), and the optimal mixing ratio was confirmed for use as a cosmetic material. DPPH and ABTS radical scavenging activities showed scavenging abilities of 75.37% and 99.19%, respectively, at 1,000 ㎍/mL of M6. At a concentration of 200 ㎍/mL of M6, it showed 50% of nitric oxide production inhibition compared to the lipopolysaccharide-treated that induced an inflammatory response. It was confirmed that M3 and M6 produced hyaluronic acid 1.47 and 1.49 times higher than the control at a concentration of 50 ㎍/mL, respectively. Through the disc diffiusion test, the clear zone was 9.75 mm at 8 ㎍/mL of M6, confirming the inhibition of growth of staplylococcus aureus strain. Based on the above results, it is believed that the mixed extract of Polygala tenuifolia, Angelica dahurica, and Elsholtzia splendens can be used as a functional natural material for cosmetics.