• 제목/요약/키워드: Strain monitoring

검색결과 625건 처리시간 0.024초

FBG 센서를 활용한 가공 전차선의 스트레인 모니터링 (Strain monitoring of overhead contact line with FBG sensors)

  • 최원석;고기한;이경복;박영;조용현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1227-1230
    • /
    • 2008
  • This paper reports on measurement method for the fiber optic strain monitoring of overhead contact line systems of trains. We used fiber Bragg grating (FBG) sensors to measure the strain variation of overhead contact line. FBG sensors were attached on the contact line and connected to the monitering system with optical fibers. The monitering system with FBG sensors showed very good sensitivity to measuring strain variation and this system could be applied to the overhead contact line of KTX.

  • PDF

광섬유 센서를 이용한 온도 및 변형 모니터링에 대한 현장응용 사례 (Case Studies on Distributed Temperature and Strain Sensing(DTSS) by using an Optical fiber)

  • 김중열;김유성;이성욱;민경주;박동수;방기성;김강식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.86-95
    • /
    • 2006
  • Brillouin backscatter is a type of reflection that occurs when light is shone into an optical fibre. Brillouin reflections are very sensitive to changes in the fibre arising from external effects, such as temperature, strain and pressure. We report here several case studies on the measurement of strain using Brillouin reflections. A mechanical bending test of an I beam, deployed with both fiber optic sensors and conventional strain gauge rosettes, was performed with the aim of evaluating: (1) the capability and technical limit of the DTSS technology for strain profile sensing; (2) the reliability of strain measurement using fiber optic sensor. The average values of strains obtained from both DTSS and strain gauges (corresponding to the deflection of I beam) showed a linear relationship and an excellent one-to-one match. A practical application of DTSS technology as an early warning system for land sliding or subsidence was examined through a field test at a hillside. Extremely strong, lightweight, rugged, survivable tight-buffered cables, designed for optimal strain transfer to the fibre, were used and clamped on the subsurface at a depth of about 50cm. It was proved that DTSS measurements could detect the exact position and the progress of strain changes induced by land sliding and subsidence. We also carried out the first ever distributed dynamic strain measurement (10Hz) on the Korean Train eXpress(KTX) railway track in Daejeon, Korea. The aim was to analyse the integrity of a section of track that had recently been repaired. The Sensornet DTSS was used to monitor this 85m section of track while a KTX train passed over. In the repaired section the strain increases to levels of 90 microstrain, whereas in the section of regular track the strain is in the region of 30-50 microstrain. The results were excellent since they demonstrate that the DTSS is able to measure small, dynamic changes in strain in rails during normal operating conditions. The current 10km range of the DTSS creates a potential to monitor the integrity of large lengths of track, and especially higher risk sections such as bridges, repaired track and areas at risk of subsidence.

  • PDF

상태감시시스템을 이용한 팬터그래프-전차선로 동특성 분석에 관한 연구 (Analysis for the dynamic responses of pantograph-overhead contact line coupled system by using a condition monitoring system)

  • 조용현;박영;이기원;권삼영;박현준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.778-781
    • /
    • 2008
  • The aim of this paper is to analyze the dynamic responses of pantograph-overhead contact line coupled system by using a condition monitoring system. The monitoring items are strain, vertical displacement and acceleration of a contact wire. Both strain and vertical displacement in the contact wire depends on uplift force and train velocity. Measurement of acceleration shows that the passage of the pantograph gives an impact force to a hard point on a contact wire.

  • PDF

광섬유격자 센서를 활용한 사면거동 실시간 안전 진단 시스템 (Real-Time Monitoring and Warning System for Slope Movements Using FBG Sensor.)

  • 장기태;정경선;김성환;박권제;이원효;김경태;강창국;홍성진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 사면안정 학술발표회
    • /
    • pp.60-76
    • /
    • 2000
  • Early detection in real-time response of slope movements ensures tremendous saving of lives and repair costs from catastrophic disaster Therefore, it is essential to constantly monitor the performance and integrity of slope-stabilizing structures such as Rock bolt, Nail and Pile during or after installation. We developed a novel monitoring system using Fiber Bragg Grating (FBG)sensor. It's advantages are highly sensitivity, small dimension and electro-magnetic immunity. capability of multiplexing, system integrity, remote sensing - these serve real-time health monitoring of the structures. Real-time strain measurement by the signal processing program is shown graphically and it gives a warning sound when the monitored strain state exceeds a given threshold level so that any sign of abnormal disturbance on the spot can be easily perceived.

  • PDF

소규모 구조물의 안전진단을 위한 무선 센서 네트워크 (Wireless Sensor Network for Health & Safety Monitoring of Small Sized Structures)

  • 맹주상;김일환
    • 전기학회논문지
    • /
    • 제67권8호
    • /
    • pp.1099-1105
    • /
    • 2018
  • Wireless sensor networks have been shown to be an effective method for health monitoring of civil structures. In this paper a wireless strain sensor system which will allow easier collection of accurate strain signals in small sized structures is described. The experiment result shows that the developed wireless sensor system and the proposed network system are fit for health & safety monitoring and control of structures.

Two-step approaches for effective bridge health monitoring

  • Lee, Jong Jae;Yun, Chung Bang
    • Structural Engineering and Mechanics
    • /
    • 제23권1호
    • /
    • pp.75-95
    • /
    • 2006
  • Two-step identification approaches for effective bridge health monitoring are proposed to alleviate the issues associated with many unknown parameters faced in real structures and to improve the accuracy in the estimate results. It is suitable for on-line monitoring scheme, since the damage assessment is not always needed to be carried out whereas the alarming for damages is to be continuously monitored. In the first step for screening potentially damaged members, a damage indicator method based on modal strain energy, probabilistic neural networks and the conventional neural networks using grouping technique are utilized and then the conventional neural networks technique is utilized for damage assessment on the screened members in the second step. The effectiveness of the proposed methods is investigated through a field test on the northern-most span of the old Hannam Grand Bridge over the Han River in Seoul, Korea.

선체 응력 모니터링을 위한 FBG 센서에 대한 연구 (Study on FBG Sensors for Hull Stress Monitoring)

  • 김유미;이남권;이승환;배동명;유윤식
    • 센서학회지
    • /
    • 제21권4호
    • /
    • pp.276-282
    • /
    • 2012
  • Vessels receive stress during their navigations as well as during their cargo operations. This stress may cause damages to the hull and may result in accidents. So the hull stress monitoring system(HSMS) is recommended in order to prevent these accidents. In this paper, we manufactured fiber Bragg grating(FBG) sensor and the model ship for towing tank experiments. The strain characteristics of the model ship on the water wave were measured through the towing tank experiment. The FBG sensors and electric strain gauges were attached on the connection jig, and then the characteristics of the FBG sensor were compared with those of the electric strain gauge. The strain of model ship was increased according to the increment of the amplitude of water wave. In particular, the largest strain was measured in the center of the model ship. As the wave period increased, the strain of model ship was decreased.

풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석 (A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine)

  • 박무열;유능수;남윤수
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

풍력발전기 블레이드 변형 측정을 위한 액체금속 스트레인 게이지 개발 (Development of Liquid Metal Strain Gauge for Measuring WT Blade's Deformation)

  • 박인겸;서영호;김병희
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.307-314
    • /
    • 2015
  • In this paper, the embedding type novel liquid metal strain gauge was developed for measuring the deformation of wind turbine blades. In general, the conventional methods for the SHM have many disadvantages such as frequency distortion in FBG sensors, the low gauge factor and mechanical failures in strain gauges and extremely sophisticated filtering in AE sensors. However, the liquid metal filled in a pre-confined micro channel shows dramatic characteristics such as high sensitivity, flexibility and robustnes! s to environment. To adopt such a high feasibility of the liquid metal in flexible sensor applications, the EGaIn was introduced to make flexible liquid metal strain gauges for the SHM. A micro channeled flexible film fabricated by the several MEMS processes and the PDMS replication was filled with EGaIn and wire-connected. Lots of experiments were conducted to investigate the performance of the developed strain gauges and verify the feasibility to the actual wind turbine blades health monitoring.

Monitoring of Moisture and Dimensional Behaviors of Nail-Laminated Timber (NLT)-Concrete Slab Exposed to Outdoor Air

  • HWANG, Sung-Wook;CHUNG, Hyunwoo;LEE, Taekyeong;AHN, Kyung-Sun;PANG, Sung-Jun;BANG, Junsik;Won, Hyo;OH, Jung-Kwon;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권5호
    • /
    • pp.301-314
    • /
    • 2022
  • The moisture and dimensional behaviors of a nail-laminated timber (NLT)-concrete slab composed of an NLT-plywood composite and topping concrete are monitored for 385 days. The slab is developed for using as flexural elements such as floors. The humidity control of wood gently introduces significant fluctuations under the ambient relative humidity into the slab, and fluctuations in the relative humidity result in dimensional changes. The equilibrium moisture content of the slab increases from 6.7% to 15.3% during the monitoring period, resulting in a width (radial) strain of 0.58%. The length (longitudinal) strain is negligible, and the height (tangential) strain is excluded from the analysis because of abstruse signal patterns generated. Concrete pouring causes a permanent increase in the width of the NLT-plywood composite. However, the width deforms because the weight of the concrete mixture loosens the nail-laminated structure, not because of the significant amount of moisture in the mixture. The dimensional stabilization effect of the nail-laminated system is demonstrated as the composite strain is lower than the total strain of lumber and plywood, which are elements constituting the nail-laminated structure.