• 제목/요약/키워드: Strain energy function

검색결과 200건 처리시간 0.026초

Sizing, shape and topology optimization of trusses with energy approach

  • Nguyena, Xuan-Hoang;Lee, Jaehong
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.107-121
    • /
    • 2015
  • The main objective of this research is to present the procedures of combining topology, shape & sizing optimization for truss structure by employing strain energy as objective function under the constraints of volume fractions which yield more general solution than that of total weight approach. Genetic Algorithm (GA) is used as searching engine for the convergence solution. A number of algorithms from previous research are used for evaluating the feasibility and stability of candidate to accelerate convergence and reduce the computational effort. It is followed by solving problem for topology & shape optimization and topology, shape & sizing optimization of truss structure to illustrate the feasibility of applying the objective function of strain energy throughout optimization stages.

부틸고무의 변형률 에너지 함수 예측 (Prediction of Strain Energy Function for Butyl Rubbers)

  • 김남웅;김국원
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1227-1234
    • /
    • 2006
  • Up to now, several mathematical theories based on strain energy functions have been developed for rubber materials. These theories, coupled with the finite element method, can be used very effectively by engineers to analyze and design rubber components. However, due to the complexities of the mathematical formulations and the lack of general guidelines available fur the analysis of rubber components, it is a formidable task for an engineer to analyze rubber components. In this paper a method for predicting strain energy functions - Neo-Hookean model and Mooney-Rivlin model - from the hardness using the empirical equation without any experiment is discussed. First based on the elasticity theories of rubber, the relation between stress and strain is defined. Then for the butyl rubbers, the model constants of Neo-Hookean model and Mooney-Rivlin model are calculated from uniaxial tension tests. From the results, the usefulness of the empirical equation to estimate elastic modulus from hardness is confirmed and, fur Mooney-Rivlin model, the predicted and the experimental model constants are compared and discussed.

초탄성 재료의 변형률에너지함수를 이용한 LRB받침의 유한요소해석 (Finite Element Analysis of Lead Rubber Bearing by Using Strain Energy Function of Hyper-Elastic Material)

  • 조성국;박웅기;윤성민
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.361-374
    • /
    • 2016
  • 이 연구는 대표적인 면진장치인 납고무베어링(LRB)의 유한요소모델의 신뢰성을 향상시키기 위하여 주재료인 고무의 재료특성에 대하여 연구하였다. 고무는 일반적인 탄성재료와는 달리 대변형, 비선형특성을 가지는 초탄성 재료이다. 본 연구에서는 고무를 초탄성 재료로 가정하고 그의 재료특성을 변형률에너지함수로 표현하여 LRB의 유한요소모델을 개발하였다. 연구를 위하여 여러 변형률에너지함수 중 몇 가지를 선별하고 이를 이용하여 고무의 재료특성을 예측하였다. 변형률에너지함수를 이용하여 결정된 고무의 재료특성과 표준적인 납의 재료특성을 이용하여 LRB의 유한요소모델을 개발하고, 수평방향과 수직방향의 힘-변위 관계를 해석하였다. LRB의 유한요소모델을 통하여 해석으로 예측한 수평과 수직방향 강성을 실험결과와 비교함으로써 개발된 유한요소모델의 적합성을 검증하였다.

구조물의 자유진동모드로 유발되는 변형에너지 분포를 이용한 위상최적화기법 (Topology Optimization Technique using Strain Energy Distributions induced by the Mode Shapes associated with Natural Frequencies)

  • 이상진;배정은;박경임
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1015-1018
    • /
    • 2006
  • In this paper, new topology optimization technique is proposed. It mainly uses the strain energy distributions induced by the mode shapes associated with natural frequencies of the structure and so we can implicitly consider the dynamic characteristics of the structure in the topology optimization process. The strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. The resizing algorithm devised from the optimality criteria method is used to update the hole size of the cell existing in each finite element. The cantilever beam problem is adopted to test the proposed techniques. From numerical test, it is found to be that the optimum topology of the cantilever produced by the proposed technique has a hugh increase of natural frequency value and the technique is very effective to maximize the fundamental frequency of the structure.

  • PDF

A softening hyperelastic model and simulation of the failure of granular materials

  • Chang, Jiangfang;Chu, Xihua;Xu, Yuanjie
    • Geomechanics and Engineering
    • /
    • 제7권4호
    • /
    • pp.335-353
    • /
    • 2014
  • The softening hyperelastic model based on the strain energy limitation is of clear concepts and simple forms to describe the failure of materials. In this study, a linear and a nonlinear softening hyperelastic model are proposed to characterize the deformation and the failure in granular materials by introducing a softening function into the shear part of the strain energy. A method to determine material parameters introduced in the models is suggested. Based on the proposed models the numerical examples focus on bearing capacity and strain localization of granular materials. Compared with Volokh softening hyperelasticity and classical Mohr-Coulomb plasticity, our proposed models are able to capture the typical characters of granular materials such as the strain softening and the critical state. In addition, the issue of mesh dependency of the proposed models is investigated.

Assumed strain finite strip method using the non-periodic B-spline

  • Hong, Hyun-Seok;Kim, Kyeong-Ho;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.671-690
    • /
    • 2004
  • An assumed strain finite strip method(FSM) using the non-periodic B-spline for a shell is presented. In the present method, the shape function based on the non-periodic B-splines satisfies the Kronecker delta properties at the boundaries and allows to introduce interior supports in much the same way as in a conventional finite element formulation. In the formulation for a shell, the geometry of the shell is defined by non-periodic B3-splines without any tangential vectors at the ends and the penalty function method is used to incorporate the drilling degrees of freedom. In this study, new assumed strain fields using the non-periodic B-spline function are proposed to overcome the locking problems. The strip formulated in this way does not posses any spurious zero energy modes. The versatility and accuracy of the new approach are demonstrated through a series of numerical examples.

(Pb, Ba) (Zr, Ti)O3계의 확산된 상전이에 있어서 Strain Energy의 역할 (Role of the Strain Energy in Diffuse Phase Transition of (Pb, Ba)(Zr, Ti)O3)

  • 이재찬;주웅길
    • 한국세라믹학회지
    • /
    • 제24권6호
    • /
    • pp.586-592
    • /
    • 1987
  • The role of the strain energy and phase stability in the diffuse phase transition have been investigated in the highly disordered solid solution, (Pb1-xBax)(Zr0.4Ti0.6)O3 (0.2 x 0.4). X-ray diffraction analysis indicates that tetragonality (c/a) decreases with the increasing Ba content. Also as the Ba content increases, phase transition becomes more diffuse and at the same time dielectric relaxation as a function of measured frequencies in the 1KHz-10MHz range occurs very pronouncedly. In the Ba content range, 0.2 x 0.35, hysteresis loops are routinely observed and the loop is observed to narrow shape as the Ba content increases but becomes very slim at 40mol% Ba content. Moreover thermal analysis shows that there is no abrupt change in the thermal expansion coefficient below the apparent transition temperature at which dielectric constant becomes maximum. From the above results, it has been concluded that creation of the strain energy due to the distorthion that occurred during the phase transition suppresses diffuse phase transition.

  • PDF

Dynamic Fracture Properties of Modified S-FPZ Model for Concrete

  • Yon, Jung-Heum;Seo, Min-Kuk
    • International Journal of Concrete Structures and Materials
    • /
    • 제19권1E호
    • /
    • pp.25-32
    • /
    • 2007
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}(w)$ for fracture process zone (FPZ) development. The $f_{ccs}(w)$ relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The behaviors of micro-cracking, micro-crack localization and full development of the FPZ in concrete can be explained theoretically with the variation of strain energy release rate with crack extension.

모드변형에너지를 기저로 하는 위상최적화기법을 사용한 보의 고유진동수 최대화 (The Natural Frequency Maximization of Beam Structures by using Modal Strain Energy based Topology Optimization Technique)

  • 이상진;배정은
    • 한국공간구조학회논문집
    • /
    • 제7권4호
    • /
    • pp.89-96
    • /
    • 2007
  • 위상최적화기법을 이용하여 보의 기본고유진동수 최대화문제를 수행하였다. 도입된 위상최적화기법은 구조물의 모드형상에 의해서 발생되는 모드변형에너지를 바탕으로 한다. 최소화하고자하는 모드변형에너지를 목적함수로 하고 구조물의 초기부피를 제약함수로 채택하였다. 최적정기준법을 바탕으로 한 크기조절알고리듬을 유한요소내부에 존재하는 셀의 빈공간의 크기를 조절하기 위해 도입하였다. 세 가지의 다른 경계조건을 가지는 보를 이용하여 자유진동모드형상에 저항하는 보의 최적위상을 조사하였다. 수치해석결과로부터 도입된 위상최적화기법을 이용하여 도출한 보의 최적위상은 초기구조물에 비해 저차의 자유진동수가 크게 증가하는 것으로 나타났으며 특히 모드변형에너지를 이용하는 위상최적화의 경우에는 구조물의 기본진동수를 최대화하는데 매우 효과적인 것으로 나타났다.

  • PDF

비선형 탄성이론에 기초한 혈관류 생체재료 실험장치 (Rubber-liked Biomaterial Experimental Setup based on Nonlinear Elasticity Theory)

  • 강태원
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.90-97
    • /
    • 2010
  • In order to understand the biomaterial like the blood vessel of artery, there is a need to quantify the biomechanical behavior of the vessel. Using computer-controlled experimental system, the experiment can acquire data such as inner pressure, axial load, diameter and axial gauge length without contacting the specimen. Rubber-liked material which is similar to passive artery was selected as pseudo-biomaterial. Deformations are measured for pressure-diameter curves. The data were collected and stored online to be used in the feedback control of experimental protocols. Finally, the illustrative data obtained from the experimental system were presented and the system shows that strain invariants are controlled to understand the nonlinear elastic behavior of biomaterial which is involved with strain energy function.