• Title/Summary/Keyword: Strain Sensors

Search Result 538, Processing Time 0.027 seconds

Multi-Modal Vibration Control of Truss Structures Using Piezoelectric Actuators (압전작동기를 이용한 트러스 구조물의 다중 모드 진동제어)

  • Ju, Hyeong-Dal;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2502-2512
    • /
    • 2000
  • Truss structures are widely used in many space structures, such as large antenna systems, space stations, precision segmented telescopes because they are light in weight and amenable in assembly or deployment. But, due to the low damping capacity, they remain excited for a long time once disturbed. These structural vibrations can reduce life of the structures and cause unstable dynamic characteristics. In this research, vibration suppression experiment has carried out with a three-dimensional 15-member truss structure using two piezoelectric actuators. Piezoelectric actuators which consist of stacks of thin piezoelectric material disks are directly inserted to the truss structure collocated with the strain sensors. Each actuator is controlled digitally in decentralized manner, based on local integral and proportional feedback. The optimal positions of the actuators are determined by the modal damping ratio and the control force. Numerical simulation has carried out to determine optimal position of each actuator.

Development of 6-axis force/moment sensor for a humonoid robot (인간형 로봇을 위한 6축 힘/모멘트센서 개발)

  • Kim, Gab-Soon;Shin, Hyi-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.211-219
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for a humanoid robot. In order to walk on uneven terrain safely, the robot's foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself, and be controlled by the foot using the forces and moments. Also, in order to grasp unknown object safely, the robot's hand should perceive the weight of the object using the mounted 6-axis force/moment sensor to its wrist, and be controlled by the hand using the forces and moments. Therefore, 6-axis force/moment sensor should be necessary for a humanoid robot's hand and foot. In this paper, 6-axis force/moment sensor for a humanoid robot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing element of the sensor was designed using theoretical analysis. Then, 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from theoretical analysis agree well with the results from the experiments.

Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges

  • Soman, Rohan N.;Onoufrioua, Toula;Kyriakidesb, Marios A.;Votsisc, Renos A.;Chrysostomou, Christis Z.
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2014
  • The paper presents a multi-objective optimization strategy for a multi-type sensor placement for Structural Health Monitoring (SHM) of long span bridges. The problem is formulated for simultaneous placement of strain sensors and accelerometers (heterogeneous network) based on application demands for SHM system. Modal Identification (MI) and Accurate Mode Shape Expansion (AMSE) were chosen as the application demands for SHM. The optimization problem is solved through the use of integer Genetic Algorithm (GA) to maximize a common metric to ensure adequate MI and AMSE. The performance of the joint optimization problem solved by GA is compared with other established methods for homogenous sensor placement. The results indicate that the use of a multi-type sensor system can improve the quality of SHM. It has also been demonstrated that use of GA improves the overall quality of the sensor placement compared to other methods for optimization of sensor placement.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

Crack Detection of Composite Cylinders under external pressure using the Acoustic Emission (AE 기법을 이용한 외부수압을 받는 복합재 원통의 균열 검출)

  • Park, Jin-Ha;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.25-30
    • /
    • 2011
  • The studies on the non-destructive testing methods of the composite materials are very important for improving their reliability and safety. AE(Acoustic Emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the generation and growth of a crack, plastic deformation, fiber breakage, matrix cleavage or delamination. In this paper, the AE signals of the filament wound composite cylinder and sandwich cylinder during the pressure test were measured and analyzed. The signal characteristics of PVDF sensors were measured, and an AE signal analyzer which had the band-pass filter and L-C resonance filter were designed and fabricated. Also, the crack detection capability of the fabricated AE signal analyzer wes evaluated during the pressure tests of the filament wound composite cylinder and the sandwich cylinder.

Development of miniature weight sensor using piezoresistive pressure sensor (압저항형 압력센서를 이용한 초소형 하중센서의 개발)

  • Kim, Woo-Jeong;Cho, Yong-Soo;Kang, Hyun-Jae;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.237-243
    • /
    • 2005
  • Strain gauge type load cell is used widely as weight sensor. However, it has problems such as noise, power consumption, high cost and big size. Semiconductor type piezoresistive pressure sensor is practically used in recent for low hysteresis, good linearity, small size, light weight and strong on vibration. In this paper, we have fabricated the piezoresistive pressure sensor and packaged the miniature weight sensor. We packaged the miniature weight sensor by flip-chip bonding between die and PCB for durability, because the weight sensor is directly contacted on a physical solid distinct from air and oil pressure. We measured the characteristics of the weight sensor, which had the output of $10{\sim}80$ mV on the weight range of $0{\sim}2$ kg. In the result, we could fabricate the weight sensor with an accuracy of 3 %FSO linearity.

Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records (상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정)

  • Kim Jae Min;Feng. M. Q.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

A Study for Smart Overload Vehicle Regulation System (지능형 과적단속을 위한 시스템 구축 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Choi, Ji-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • Overload vehicles have demoralizing influence upon the social overhead capital, economics of nation, traffic flow and road safe as various components. Accordingly, this study established a ubiquitous sensor network system to develop an intelligent regulation system to monitor overloaded vehicles in motion. and Unlike WIM, after detecting the axle of driving vehicles by measuring deformation of roads, this system calculates the weights of vehicles by using signals from the strain sensors installed under the road and an analysis method. Also the study conducted an simulation test for vehicle load analysis using genetic algorithm. and tested wireless sensor for USN system.

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

A Study on the Application of Ni-Ti Shape Memory Alloy Wire Embedded in Composite Beam as a Sensor. (복합재료 보에 삽입된 Ni-Ti 형상기억합금 선의 센서로의 응용을 위한 연구)

  • Lee, Chang-Ho;Lee, Jung-Ju;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.285-292
    • /
    • 1998
  • Shape Memory Alloy(SMA) has been used in many engineering fields because of its good characteristics of actuator. For example, SMA wire can be embedded easily in the polymer composite laminate and then be used as actuator for structural control. Since the strain have a significant influence on the electrical resistance of SMA wire, It is a possible to use the SMA wire as a sensor of such physical quantities. In this study, the possibility for the application of Ni-Ti SMA wire as a sensor embedded within a composite laminate is investigated.

  • PDF