• Title/Summary/Keyword: Strain Gage Test

Search Result 110, Processing Time 0.031 seconds

Structural Strain Measurement Technique Using a Fiber Optic OTDR Sensor (광섬유 OTDR 센서에 의한 구조물의 변형률 측정 방법)

  • 권일범;김치엽;유정애
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.388-399
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural strain measurement. The sensing fibers are manufactured 3 kinds of fibers: one is single mode fiber, and second is multimode fiber, and the third is low-cladding-index fiber. Fiber bending tests are performed to determine the strain sensitivity according to the strain of gage length of optical fibers. In the result of this experiments, the strain sensitivity of the single mode fiber was shown the highest value than others. The fiber optic strain probe was manufactured to verify the feasibility of the structural strain measurement. In this test, the fiber optic strain probe of the OTDR sensor could be easily made by the single mode fiber.

  • PDF

Comparison of Measurement Methods and Prediction Models for Drying Shrinkage of Concrete (콘크리트 건조수축 측정 방법 및 예측 모델에 대한 비교)

  • Yang, Eun-Ik;Kim, Il-Sun;Yi, Seong-Tae;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, the drying shrinkage strains were compared of 24~60 MPa concrete specimens subjected to various curing conditions and measurement methods were compared. And, the applicability of the test and prediction methods were investigated. According to the results, drying shrinkage was significantly reduced in 28 day curing condition. In the sealed curing case, drying shrinkage strain from demolding time was identical to the one of the standard curing case for low strength concrete, however, drying shrinkage strain was greatly increased than the standard case for high strength case because of the effect of autogenous shrinkage. The efficient measurement was possible using the embedded gage for concrete drying shrinkage, but, the measured value by contact gage was lower than the one by the embedded gage. The test results agreed with EC2 model better than the other.

Simultaneous Sensing of Failure and Strain in Composites Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재의 파손 및 번형률 동시 측정)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.12-19
    • /
    • 2001
  • In aircraft composite structures, structural defects such as matrix cracks, delaminations and fiber breakages are hard to detect if they are breaking out in operating condition. Therefore, to assure the structural integrity, it is desirable to perform the real-time health monitoring of the structures. In this study, a fiber optic sensor was applied to the composite beams to monitor failure and strain in real-time. To detect the failure signal and strain simultaneously, laser diode and ASE broadband source were applied in a single EFPI sensor using wavelength division multiplexer. Short time courier transform and wavelet transform were used to characterize the failure signal and to determine the moment of failure. And the strain measured by AEFPI was compared with the that of strain gage. From the result of the tensile test, strain measured by the AEFPI agreed with the value of electric strain gage and the failure detection system could detect the moment of failure with high sensitivity to recognize the onset of micro-crack failure signal.

  • PDF

The Rate Dependent Deformation Behavior of AISI Type 304 Stainless Steel at Room Temperature (304 스테인리스강의 점소성 특성에 관한 연구)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.101-106
    • /
    • 2007
  • Uniaxial displacement controlled tests were performed on annealed Type 304 stainless steel at room temperature. A servo-controlled testing machine and strain measurement on the gage length were employed to measure the response to a given input. The test results exhibit that the flow stress increases nonlinearly with the strain rate and the relaxed stress at the end of the relaxation periods depends strongly on the strain rate preceding the relaxation test. The rate-dependent inelastic deformation behavior is simulated using a new unified viscoplasticity model that has the rate-dependent format of nonlinear kinematic hardening rule, which plays a key role in modeling the rate dependence of relaxation behavior. The model does not employ yield or loading/unloading criteria and consists of a flow law and the evolution laws of two tensor and one scalar-valued state variables.

A Study on the Strain Measurement of Concrete Pavement Slab (콘크리트 포장 슬래브의 변형률 측정에 관한 연구)

  • Kim, Dong-Ho;Jeon, Sung-Il;Choi, Chang-Sik;Yun, Byeung-Sung;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.169-176
    • /
    • 2002
  • The purpose of this paper is to investigate for strain measurement of concrete pavement slab at field. The early-age behaviors of concrete pavement were measured using the strain gages. From the static and dynamic wheel loading tests, the outputs from each gages were recorded. The measured data, also, was compared to those from finite element analysis. The static wheel loading tests were performed in twice, and the dynamic wheel loading tests were performed at the speed 10km-50km. The results could be summarized as follows: To embed the strain gage accurately and stably in concrete pavement, a chair and protective box must be used. The protective box must not be affected from the outside vibrating. From the results of early-age stram measurement, it was found that the strain varied at the maximum value of $180{\mu}{\varepsilon}$ From the results of static wheel loading tests, A1, A2 and B gages generally developed a consistent tendency When comparing the results from the measured at field and the calculated by FEM analysis, the data of A1 and B gages were similar to that from theory. The values from the field test were generally higher than that from the theory. From the results of dynamic wheel loading tests, it was known that the measured strain at field became smaller as the truck speed became faster, Indicating the maximum at the range of $12{\sim}13{\mu}{\varepsilon}$.

  • PDF

The Measurement of Membrane Deformation Behavior in Kogas Pilot LNG Storage Tank by the use of Mechanical/Electrical Sensor (II) (기계적/전기적 측정 센서를 이용한 Kogas Pilot LNG 저장탱크 멤브레인 변형 거동 측정(II))

  • Kim Y.K.;Hong S.H.;Oh B.T.;Yoon I.S.;Kim J.H.;Kim S.S.
    • 한국가스학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.85-90
    • /
    • 2003
  • Korea Gas Corp. has developed the design technology of the LNG storage tank. The membrane to be applied inside of LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature. We constructed strain measurement system by using strain gage. In this paper, some problems which should be considered when measuring strain at $-162^{\circ}C$, are discussed by presenting test results on the characteristics of strain gages, Temperature sensor, adhesive and lead wire. And presenting the procedure of the constructing strain measurement system.

  • PDF

Measuring strain on fiber Bragg grating sensors with a linear wavelength sweeping laser (파장 선형 스위핑 레이저를 이용한 광섬유 격자 센서의 스트레인 측정)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.420-428
    • /
    • 2021
  • In this study, linearized sweeping of a wavelength sweeping laser was realized. This technique was used to measure the strain on a fiber Bragg grating(FBG) sensor. For linear sweeping, PID control over the wavelength difference between linear and nonlinear sweeping was employed. The performance test showed that linear sweeping with a 46 nm range and a 1 kHz frequency held up well with a 99.5 % decrement in nonlinearity after the 120th feedback. When attached to a strain gage, the FBG sensor registered strain that matched the data sheet within a difference of 4.5[με]. Altogether, linear sweeping can play a leading role in monitoring a safety of large SOC structures as well as in other wavelength sweeping laser related fields.

Fatigue Damage Behavior in TIG Welded Joint of F82H Steel under Low Cycle Fatigue Loading (저주기 피로부하에서 F82H 강 TIG 용접 접합부의 피로손상거동)

  • Kim, Dong-Hyun;Park, Ki-Won
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • Reduced activation ferritic/martensitic steels are recognized as the primary candidate structural materials for fusion blanket systems. Welding is an inevitable for breeding blanket for pressure tightness and radioisotope confinement. Especially, TIG welding was chosen for sealing because it has the largest gap allowance compared to the other welding methods, and its properties are controllable by feed wire and welding conditions. In this study, the low cycle fatigue test using two-type gage such as extensometer and strain gage was applied to the TIG welded joint of F82H steel, for evaluating fatigue damage accumulation behavior of the HAZs. As the result, the over-tempered HAZ have shown a higher fatigue damage accumulation compared with other materials at all the testing conditions.

EFFECT OF FIBER DIRECTION ON THE POLYMERIZATION SHRINKAGE OF FIBER-REINFORCED COMPOSITES (섬유 보강 복합레진의 섬유 방향이 중합수축에 미치는 영향)

  • Yom, Joong-Won;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.364-370
    • /
    • 2009
  • The aim of this study was to evaluate the effect of fiber direction on the polymerization shrinkage of fiber-reinforced composite. The disc-shaped flowable composite specimens (d = 10 mm, h = 2 mm, Aeliteflo A2, Bisco, Inc., IL, USA) with or without glass fiber bundle (X-80821P Glass Fiber, Bisco, Inc., IL, USA) inside were prepared, and the longitudinal and transversal polymerization shrinkage of the specimens on radial plane were measured with strain gages (Linear S-series 350${\Omega}$, CAS, Seoul, Korea). In order to measure the free polymerization shrinkage of the flowable composite itself, the disc-shaped specimens (d = 7 mm, h = 1 mm) without fiber were prepared, and the axial shrinkage was measured with an LVDT (linear variable differential transformer) displacement sensor. The cross-section of the polymerized specimens was observed with a scanning electron microscope to examine the arrangement of the fiber bundle in composite. The mean polymerization shrinkage value of each specimen group was analyzed with ANOVA and Scheffe post-hoc test (${\alpha}$=0.05). The radial polymerization shrinkage of fiber-reinforced composite was decreased in the longitudinal direction of fiber, but increased in the transversal direction of fiber (p<0.05). We can conclude that the polymerization shrinkage of fiber-reinforced composite splint or restoratives is dependent on the direction of fiber.

Processing and Pressure Test of Filament Wound Composite Pressure Vessels for Oxygen Tanks (복합재료 산소 압력용기의 성형 및 내압 시험)

  • 황병선;김병하;김병선;박승범;엄문광
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.10-17
    • /
    • 2001
  • A reseach was peformed to develop composite pressure vessels in conjunction with design, fabrication, and test. Fiber pattern and angels were decided by CADFIL software and they were [$liner/15^{\circ}/15^{\circ}/90^{\circ}/18^{\circ}/90^{\circ}/21^{\circ}/21^{\circ}/90^{\circ}$]. Fabrication of bottles were done by 5-axis filament winding machine. During fabrication fiber optic sensors were embedded to measure the strain at points when internal pressure was applied by water pump. Conventional strain gage instrumentation showed the stable test results. The test results were compared to finite element analysis results and they were close each other in strain values. One can see the successful design and fabrication of single boss composite vessels.

  • PDF