• Title/Summary/Keyword: Story Displacement

Search Result 359, Processing Time 0.026 seconds

Structural member stiffness influence on vertical earthquake behaviour of mid-rise R/C frame buildings in Turkey

  • Selcuk Bas
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.689-706
    • /
    • 2024
  • This study is aimed at identifying structural element stiffness influence on vertical earthquake response of mid-rise R/C frame buildings. To this aim, a mid-rise RC building structure is designed as per the new Turkish Seismic Code for Buildings-2018, and 3D FE model of the building is established. Based on the established FE model, a total number of six buildings are considered depending on certain percentage increase in beam, slab, and column. The time-history response analyses (THA) are performed separately for only horizontal (H) and horizontal +vertical (H+V) earthquake motions to make a comparison between the load cases. The analysis results are presented comparatively in terms of the monitoring parameters of the base overturning moment (Mo), the top-story lateral displacement (dL) and the top-story vertical displacement (dV). The obtained results reveal that the base overturning moment and the top-story vertical displacement are affected by vertical earthquake motion regardless of the increase in the dimension of beam, slab, and column. However, vertical earthquake motion is not effective on the top-story lateral displacement due to no change between H and H+V load. The dimensional increase in either slab or beam leads to a considerable increase in the base overturning moment and the top-story vertical displacement while causing decrease in the top-story lateral displacement. In addition, the dimensional increase in column has a positive effect on the decrease in the monitoring parameters of the base overturning moment (Mo), the top-story lateral displacement (dL) and the top-story vertical displacement (dV).

Seismic Response Evaluation of Mid-Story Isolation System According to the Change of Characteristics of the Seismic Isolation Device (면진장치 특성 변화에 따른 중간층 면진시스템의 지진응답 평가)

  • Kim, Hyun-Su;Kim, Su-Geun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.109-116
    • /
    • 2018
  • As the number of high-rise buildings increases, a mid-story isolation system has been proposed for high-rise buildings. Due to structural problems, an appropriate isolation layer displacement is required for an isolation system. In this study, the mid-story isolation system was designed and the seismic response of the structure was investigated by varying the yield strength and the horizontal stiffness of the seismic isolation system. To do this, a model with an isolation layer at the bottom of $15^{th}$ floor of a 20-story building was used as an example structure. Kobe(1995) and Nihonkai-Chubu(1983) earthquake are used as earthquake excitations. The yield strength and the horizontal stiffness of the seismic isolation system were varied to determine the seismic displacement and the story drift ratio of the structure. Based on the analytical results, as the yield strength and horizontal stiffness increase, the displacement of the isolation layer decreases. The story drift ratio decreases and then increases. The displacement of the isolation layer and the story drift ratio are inversely proportional. Increasing the displacement of the isolation layer to reduce the story drift ratio can cause the structure to become unstable. Therefore, an engineer should choose the appropriate yield strength and horizontal stiffness in consideration of the safety and efficiency of the structure when a mid-story isolation system for a high-rise building is designed.

Drift displacement data based estimation of cumulative plastic deformation ratios for buildings

  • Nishitani, Akira;Matsui, Chisa;Hara, Yushiro;Xiang, Ping;Nitta, Yoshihiro;Hatada, Tomohiko;Katamura, Ryota;Matsuya, Iwao;Tanii, Takashi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.881-896
    • /
    • 2015
  • The authors' research group has developed a noncontact type of sensors which directly measure the inter-story drift displacements of a building during a seismic event. Soon after that event, such seismically-induced drift displacement data would provide structural engineers with useful information to judge how the stories have been damaged. This paper presents a scheme of estimating the story cumulative plastic deformation ratios based on such measured drift displacement information toward the building safety monitoring. The presented scheme requires the data of story drift displacements and the ground motion acceleration. The involved calculations are rather simple without any detailed information on structural elements required: the story hysteresis loops are first estimated and then the cumulative plastic deformation ratio of each story is evaluated from the estimated hysteresis. The effectiveness of the scheme is demonstrated by utilizing the data of full-scale building model experiment performed at E-defense and conducting numerical simulations.

Capacity Spectrum Method for Seismic Performance Evaluation of Multi-Story Building Based on the Story Drift (층간변위를 기반으로 한 다층구조물의 내전성능 평가를 위한 역량스펙트럼법의 개발)

  • Kim, Sun-Pil;Kim, Doo-Kie;Kwak, Hyo-Gyoung;Ko, Sung-Huck;Seo, Hyeong-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.205-210
    • /
    • 2007
  • The existing capacity spectrum method (CSM) is based on the displacement based approach for seismic performance and evaluation. Currently, in the domestic and overseas standard concerning seismic design, the CSM to obtain capacity spectrum from capacity curve and demand spectrum from elastic response spectrum is presented. In the multistory building, collapse is affected more by drift than by displacement, but the existing CSM does not work for story drift. Therefore, this paper proposes an improved CSM to estimate story drift of structures through seismic performance and evaluation. It uses the ductility factor in the A-T domain to obtain constant-ductility response spectrum from earthquake response of inelastic system using the drift and capacity curve from capacity analysis of structure.

  • PDF

Extension of Direct Displacement-Based Design to Include Higher-Mode Effects in Planar Reinforced Concrete Frame Buildings

  • Abebe, Beka Hailu;Lee, Jong Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.299-309
    • /
    • 2018
  • Now that problems with force-based seismic design have been clearly identified, design is inclined toward displacement-based methods. One such widely used method is Direct-Displacement-Based Design (DDBD). Yet, one of the shortcomings of DDBD is considering higher-mode amplification of story shear, moments, and displacements using equations obtained from limited parametric studies of regular planar frames. In this paper, a different approach to account for higher-mode effects is proposed. This approach determines the lateral secant stiffness of the building frames that fulfill the allowable inter-story drift without exceeding the desired story displacements. Using the stiffness, an elastic response spectrum analysis is carried out to determine elastic higher-mode force effects. These force effects are then combined with DDBD-obtained first-mode force effects using the appropriate modal superposition method so that design can be performed. The proposed design procedure is verified using Nonlinear Time History Analysis (NTHA) of twelve planar frames in four categories accounting for mass and stiffness irregularity along the height. In general, the NTHA response outputs compared well with the allowable limits of the performance objective. Thus, it fulfills the aim of minimizing the use of NTHA for planar frame buildings, thereby saving computational resources and effort.

Inclinometer-based method to monitor displacement of high-rise buildings

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2018
  • Horizontal displacement of high-rise building is an essential index for assessing the structural performance and safety. In this paper, a novel inclinometer-based method is proposed to address this issue and an algorithm based on three spline interpolation principle is presented to estimate the horizontal displacement of high-rise buildings. In this method, the whole structure is divided into different elements by different measured points. The story drift angle curve of each element is modeled as a three spline curve. The horizontal displacement can be estimated after integration of the story drift angle curve. A numerical example is designed to verify the proposed method and the result shows this method can effectively estimate the horizontal displacement with high accuracy. After that, this method is applied to a practical slender structure - Shanghai Tower. Nature frequencies identification and deformation monitoring are conducted from the signal of inclinometers. It is concluded that inclinometer-based technology can not only be used for spectrum analysis and modal identification, but also for monitoring deformation of the whole structure. This inclinometer-based technology provides a novel method for future structural health monitoring.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

Displacement Response Analysis of Twisted Irregular Buildings According to TMD (TMD 적용에 따른 Twisted 비정형 건축물의 변위 응답 분석)

  • Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2024
  • In this study, we investigated the dynamic characteristics of three irregular building models to analyze the effectiveness of displacement response control with Tuned Mass Damper (TMD) installation in twisted irregular buildings. The three irregular models were developed with a fixed angle of twist per story at one degree, subjected to three historical seismic loads and resonant harmonic loads. By designing TMDs with linear and dashpot attributes, we varied the total mass ratio of the installed TMDs from 0.00625% to 1.0%, encompassing a total of 10 values. Two TMDs were installed at the center of the top story of the analysis model in both X and Y directions to evaluate displacement response control performance based on TMD installation. Our findings suggest that the top displacement response control performance was most effective when a 1.0% TMD was installed at the top layer of the analysis model.

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers (마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험)

  • Bae, Chun-Hee;Kim, Yeon-Whan;Lee, Sang-Hyun;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.