• Title/Summary/Keyword: Storm runoff

Search Result 413, Processing Time 0.028 seconds

Development and Effects Analysis of The Decentralized Rainwater Management System by Field Application

  • Han, Young Hae;Lee, Tae Goo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.15-21
    • /
    • 2014
  • In this study, we developed a modular rainwater infiltration system that can be applied for general purposes in urban areas to prepare for localized heavy rain caused by climatic change. This study also analyzed the system's effects on reducing runoff. An analysis of the system's effects on reducing runoff based on rainfall data and monitoring data obtained between September 2012 and December 2013 after the system was installed showed that approximately 20~22% of the runoff overflowed from the infiltration facility. Also, an analysis of the runoff that occurred during the monsoon season showed that 25% of the runoff overflowed through the storm sewer system of the urban area. These results show that the rainwater overflows after infiltrating the detention facility installed in the area during high-intensity rainfall of 100mm or higher or when precipitation is 100mm for 3~4 days without the prior rainfall. According to precipitation forecasts, torrential rainfall is becoming increasingly prevalent in Korea which is increasing the risk of floods. Therefore, the standards for storm sewer systems should be raised when planning and redeveloping urban areas, and not only should centralized facilities including sewer systems and rainwater pump facilities be increased, but a comprehensive plan should also be established for the water cycle of urban areas. This study indicates that decentralized rainwater management can be effective in an urban area and also indicates that the extended application of rainwater infiltration systems can offer eco-friendly urban development.

Estimation of Runoff Curve Number for Agricultural Reservoir Watershed Using Hydrologic Monitoring and Water Balance Method (수문모니터링과 물수지법을 이용한 농업용 저수지 유역 유출곡선번호 추정)

  • Yoon, Kwang-Sik;Kim, Young-Joo;Yoon, Suk-Gun;Jung, Jae-Woon;Han, Kuk-Heon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.59-68
    • /
    • 2005
  • The rainfall-runoff potential of Jangseong reservoir watershed was studied based on SCS (Soil Conservation Service, which is now the NRCS, Natural Resources Conservation Service, USDA) runoff curve number (CN) technique. Precipitation and reservoir operation data had been collected. The rainfall-runoff pairs from the watershed for ten years was estimated using reservoir water balance analysis using reservoir operation records. The maximum retention, S, for each storm event from rainfall-runoff pair was estimated for selected storm events. The estimated S values were arranged in descending order, then its probability distribution was determined as log-normal distribution, and associated CNs were found about probability levels of Pr=0.1, 0.5, and 0.9, respectively. A subwatershed that has the similar portions of land use categories to the whole watershed of Jangseong reservoir was selected and hydrologic monitoring was conducted. CNs for subwatershed were determined using observed data. CNs determined from observed rainfall-runoff data and reservoir water balance analysis were compared to the suggested CNs by the method of SCS-NEH4. The $CN_{II}$ measured and estimated from water balance analysis in this study were 78.0 and 78.1, respectively. However, the $CN_{II}$, which was determined based on hydrologic soil group, land use, was 67.2 indicating that actual runoff potential of Jangseong reservoir watershed is higher than that evaluated by SCS-NEH4 method. The results showed that watershed runoff potential for large scale agricultural reservoirs needs to be examined for efficient management of water resources and flood prevention.

Analysis of Runoff Reduction with LID Adoption using the SWMM (SWMM을 이용한 춘천 거두 1지구의 LID 개념 적용으로 인한 유출 감소 특성 분석)

  • Park, Junho;Yoo, Yonggu;Park, Youngkon;Yoon, Heetaek;KIm, Jonggun;Park, Younshik;Jeon, Ji-Hong;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.806-816
    • /
    • 2008
  • In recent years, increases in impervious areas with rapid urbanization and land use changes are causing numerous hydrologic and environmental problems. In this study Low Impact Development (LID) was applied to investigate changes in runoff and peak runoff with LID plans. SWMM 5.0 was used to simulate LID Integrated Management Practices (IMPs) at study area. The SWMM estimated total runoff volume with conventional land use planning is (82.3%, 46.44 mm), (99%, 73.16 mm) greater than total runoff before urbanization, while total runoff with LID is (11.1%, 46.44 mm), (49%, 73.16 mm) greater than those before urbanization. With the LID adoption in land use planning, pervious area increases by 49.8% compared with that from the conventional urban land use planning, resulting in (32.7%, 46.44 mm), (23.6%, 73.16 mm) decrease in total runoff, and (32.6%, 46.44 mm), (18.5%, 73.16 mm) decreases in peak rate runoff. The results obtained from this study indicate that peak rate runoff, time to peak, and total runoff can be reduced with the LID in urban land use planning because the LID secures pervious areas with various LID IMPs. The SWMM simulated result using design storm data and the US EPA suggested CN values for various LID IMPs implies that how environment-friendly urban land use planning with the LID adoption is important for sustainable development at urbanizing watershed.

SS and COD Runoff from a Rice Field Watershed during Storm Events in the Growing and Non-growing Seasons (강우시 영농기와 비영농기의 광역논에서의 부유물질 (SS)과 COD의 유출특성)

  • Lee, Jeong Beom;Lee, Jae Yong;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this research was to investigate runoff characteristics of suspended solid (SS) and chemical oxygen demand (COD) from a paddy field watershed during storm events in the growing and non-growing seasons. Average of event mean concentration (EMC) of pollutants were 56.9 mg/L for SS and 23.9 mg/L for COD in the non-growing season and 50.3 mg/L for SS and 11.9 mg/L for COD in the growing season. The average EMC of SS in the study area was much lower than that in the uplands irrespective of cultivation, suggesting that paddy fields control soil erosion. This may be because flooding and wet soil in the growing season, and rice straw residue and stubble on the topsoil in the non-growing season reduce soil erosion. The changing tillage practice from fall tillage to spring tillage avoids soil erosion due to shortening of the tilled fallow period. However, the average EMC of COD in the non-growing season was about twice as much that in the growing season likely due to the runoff of organics like rice straw residues. The relationship between SS and COD loads and stormwater runoff volume was expressed by power function. The exponent for SS was higher than that for COD, suggesting that SS load increased with stormflow runoff more than COD load did. The mean SS and COD loads per storm during the non-growing season were much lower than those in the growing season, and therefore non-point source pollution in the growing season should be managed well.

Correlation Analysis Using Precipitation Radar of TRMM Satellite and Ground Observed Value : YONG-DAM Watershed (TRMM/PR 관측치와 지상 관측치와의 상관분석 - 용담댐 유역을 대상으로 -)

  • Jang, Choul-Hee;Park, Guen-Ae;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.335-339
    • /
    • 2001
  • The Tropical Rainfall Measuring Mission(TRMM) Satellite was launched in November 1997, carrying into orbit the first space-borne Precipitation Radar(PR). The purpose of this study is to identify the relationship between TRMM/PR and AWS raingage data, and test the possibility to apply storm runoff prediction. Four TRMM/PR data in 1999 for Yongdam watershed was adopted and made a simple linear regression equation using AWS data. By using the equation, the storm runoff was estimated with the adjusted rainfall. TRMM/PR rainfall and runoff was overall underestimated by the carry-over effect of rainfall error and SCS-CN value selection.

  • PDF

A Study on the Proper Size of Rainwater Stored Tank in Submerged Districts Using SWMM Program (SWMM을 활용한 침수예상지역 우수저류조의 적정크기결정에 관한 연구)

  • Jang, Seung-Jae
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.69-76
    • /
    • 2009
  • The Storm Water Management Model(SWMM) by EPA is a dynamic rainwater-runoff simulation model used for single event or long-term simulation of runoff quantity and quality from primarily urban areas. The SWMM simulation program is operated by the site area, the weather date, conduit plan etc. on reference region. The purpose of this study was to analyze flood area, the duration of flooded and surcharged on the reference region. Without rainwater stored tank, the area of flooded and surcharged on reference area is similar to the area of reference region. But, With rainwater stored tank, the area of flooded and surcharged on reference area is much reduced compared to without rainwater stored tank. According to SWMM simulation results, the rainwater stored tank is located closer to site is more effective for reduction of duration of flooded and surcharged and flow rate.

Combining Four Elements of Precipitation Loss in a Watershed (유역내 네가지 강수손실 성분들의 합성)

  • Yoo, Ju-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.200-204
    • /
    • 2012
  • In engineering hydrology, an estimation of precipitation loss is one of the most important issues for successful modeling to forecast flooding or evaluate water resources for both surface and subsurface flows in a watershed. An accurate estimation of precipitation loss is required for successful implementation of rainfall-runoff models. Precipitation loss or hydrological abstraction may be defined as the portion of the precipitation that does not contribute to the direct runoff. It may consist of several loss elements or abstractions of precipitation such as infiltration, depression storage, evaporation or evapotranspiration, and interception. A composite loss rate model that combines four loss rates over time is derived as a lumped form of a continuous time function for a storm event. The composite loss rate model developed is an exponential model similar to Horton's infiltration model, but its parameters have different meanings. In this model, the initial loss rate is related to antecedent precipitation amounts prior to a storm event, and the decay factor of the loss rate is a composite decay of four losses.

  • PDF

Performance Evaluation of Vortex Screen for Treatment of Fine Particles in Storm Runoff (Vortex Screen장치를 이용한 강우유출수내 미세입자 처리특성 분석)

  • Lee, Jun-Ho;Jung, Yun-Hee;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.256-262
    • /
    • 2009
  • The use of hydrodynamic separator is becoming increasingly popular for suspended solids reduction in urban storm runoff. This study is a laboratory investigation of the use of Vortex Screen to reduce the solids concentration of synthesized storm runoff. The synthesized storm runoff was made with water and addition of particles; manhole sediment, road sediment, fly ash, and ployvinyl chloride powder. Vortex Screen was made of acryl resin with 250 mm of diameter and height of 700 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The samples were taken simultaneously at the influent storage tank and effluent tank, and measured SS and COD concentrations. The ranges of surface loading rate were 110 to 1,550 $m^3/m^2$/day, and influent SS concentrations were varied from 141 to 1,986 mg/L. This paper was intended to evaluate the effect of inlet baffle and the ratio of underflow to overflow ($Q_U/Q_O$) on particle separation efficiency for various particle size using Vortex Screen. It was found that when increase of $Q_U/Q_O$ from 10% to 20%, SS removal efficiency was increased about 6%. The range of SS and COD removal efficiencies of road sediment particle size 125<$d_p$<300 ${\mu}m$ were 68.0~81.0%, 53.1~71.9%, respectively. Results showed that SS removal efficiency with inlet baffle improved by about 10~20% compared without inlet baffle.

Study on the Critical Storm Duration Decision of the Rivers Basin (중소하천유역의 임계지속시간 결정에 관한 연구)

  • Ahn, Seung-Seop;Lee, Hyeo-Jung;Jung, Do-June
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1301-1312
    • /
    • 2007
  • The objective of this study is to propose a critical storm duration forecasting model on storm runoff in small river basin. The critical storm duration data of 582 sub-basin which introduced disaster impact assessment report on the National Emergency Management Agency during the period from 2004 to 2007 were collected, analyzed and studied. The stepwise multiple regression method are used to establish critical storm duration forecasting models(Linear and exponential type). The results of multiple regression analysis discriminated the linear type more than exponential type. The results of multiple linear regression analysis between the critical storm duration and 5 basin characteristics parameters such as basin area, main stream length, average slope of main stream, shape factor and CN showed more than 0.75 of correlation in terms of the multi correlation coefficient.

Application of SWMM for Management of the Non-point Source in Urban Area -Case Study on the Pohang City- (도시지역 비점오염원 관리를 위한 SWMM의 적용 -포항시를 대상으로-)

  • Lee, Jae-Yong;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.247-254
    • /
    • 2008
  • Non-point source pollution that originates from surface applied chemicals in either liquid or solid form is a part of urban activities and it appears in the surface runoff caused by rainfall. This study investigates the characteristics of non point source pollution in relation to storm events and the first washing effect in the Study area, which is comprised of different land use types. Then, a Best Management Practices (BMP) model, for urban areas, is applied with the Storm water Management Model (SWMM) Windows Interface which was developed by the EPA in the USA. During the storm event analysis of the hydrographic and pollutographic data showed that the peak of pollutants concentration was within the peak flow, 30 to 60 minute into the storm event in the Study area. The results of simulation using SWMM Windows Interface, Structure Techniques as applied in the study were highly efficient for removal of pollutants. Predicted removal efficiency was 26.0% for SS, 22.1 for BOD, 24.1% for COD, 20.6% for T-N, and 21.6% for T-P, respectively.