• Title/Summary/Keyword: Storm runoff

Search Result 413, Processing Time 0.027 seconds

Application of Storm Runoff Model on Small Watershed by Finite Element Method (유한요소법에 의한 소유역 유출모형의 적용)

  • 최진규;손재권
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.97-104
    • /
    • 1992
  • The distributed hydrologic models are widely applied to estimate the storm-runoff with spatial variability in watershed characteristics and rainfall pattern. This study was aimed to introduce the event-oriented storm runoff model using finite element method, and to try it's applicability on small watershed. Yeonwha watershed was selected and 14 storm events in 1991 were used for the finite element model, and the simulation results were compared with hydrologic quantities.

  • PDF

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

Development of Finite Element Model for Storm Runoff from Small Watersheds (소유역 유출해석을 위한 유한요소모형의 개발)

  • 최진규;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.89-98
    • /
    • 1990
  • The objectives of this study are to develop a deterministic, distributed, and event - oriented hydrologic watershed model and to test the applicabilities of the model to small watersheds. The resulting model SRAFEM, Storm Runoff Analysis by Finite Element Method, is capable of simulating storm runoff from small watersheds using two - dimensional overland flow and one - dimensional channel flow components by. kinematic approximations and finite element method. Two small watersheds were selected and the applicability of the model was tested. The test results showed that the mean simulation errors for runoff volume and peak flow were 13.9% and 19.1 % for Yeonwha watershed. They were 42.8% and 8.0% for Banweol watershed, respectively.

  • PDF

An Analysis of First Flush Phenomenon of 3 Catchment area in Lake Sihwa Watershed during Rainfall-Runoff Events (강우유출수 영향에 따른 시화호 소유역별 유입하천의 오염물질 초기유출현상 분석)

  • Kim, Sea-Won;Oh, Jong-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.475-485
    • /
    • 2011
  • Lake Sihwa has a very unique watershed environment, surrounded by industrial, urban and rural catchment area with different land use. The first flush phenomenon was investigated in 3 catchment area. 4TG, representing the industrial area, shows rapid discharges of highly concentrated pollutants during the early stages of a storm and it is indicating a strong first flush effect. At AS, representing the urban area, the pollutant concentration reached its peak approximately 2~3 hours after the start of storm, which is a strong first flush effect did not appear. JJB and MS represent the rural areas, the PEMC analysis results suggest that highly concentrated pollutants were discharged during the middle and latter stages of a storm, instead of early pollutant runoff due to the effects of rainwater runoff.

Evaluation of Runoff Loads and Computing of Contribute ratio by First Flush Stormwater from Cheongyang-Hongseong Road (청양-홍성간 도로에서의 초기강우에 의한 유출부하량 평가 및 기여율 산정)

  • Lee, Chun-Won;Kang, Seon-Hong;Choi, I-Song;An, Tae-Ung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.407-417
    • /
    • 2011
  • Nowadays, the high land use, mainly used for urbanization, is affecting runoff loads of non-point pollutants to increase. According to this fact, increasing runoff loads seems like to appear that it contributes to high ratio of pollution loads in the whole the pollution loads and that this non-point source is the main cause of water becoming worse quality. Especially, concentrated pollutants on the impermeable roads run off to the public water bodies. Also the coefficient of runoff from roads is high with a fast velocity of runoff, which ends up with consequence that a lot of pollutants runoff happens when it is raining. Therefore it is very important project to evaluate the quantity of pollutant loads. In this study, I computed the pollutant loadings depending on time and rainfall to analyze characteristics of runoff while first flush storm water and evaluated the runoff time while first flush storm water and rainfall based on the change in curves on the graph. I also computed contribution ratio to identify its impact on water quality of stream. I realized that the management and treatment of first flush storm water effluents is very important for the management of road's non-point source pollutants because runoff loads of non-point source pollution are over the 80% of whole loads of stream. Also according to the evaluation of runoff loads of first flush storm water for SS, run off time was shown under the 30 minute and rainfall was shown under the 5mm which is less than 20% of whole rainfall. These are under 5mm which is regarded amount of first flush storm water by the Ministry of Environment and it is judged to be because run off by rainfall is very fast on impermeable roads. Also, run off time and rainfall of BOD is higher than SS. Therefore I realized that the management of non-point source should be managed and done differently depending on each material. Finally, the contribution ratio of pollutants loads by rainfall-runoff was shown SS 12.7%, BOD 12.7%, COD 15.9%, T-N 4.9%, T-P 8.9%, however, the pollutants loads flowing into the steam was shown 4.4%. This represents that the concentration of non-point pollutants is relatively higher and we should find the methodical management and should be concerned about non-point source for improvement on water quality of streams.

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF

Verification of Nonpoint Sources Runoff Estimation Model Equations for the Orchard Area (과수재배지 비점오염부하량 추정회귀식 비교 검증)

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, regression equation was analyzed to estimate non-point source (NPS) pollutant loads in orchard area. Many factors affecting the runoff of NPS pollutant as precipitation, storm duration time, antecedent dry weather period, total runoff density, average storm intensity and average runoff intensity were used as independent variables, NPS pollutant was used as a dependent variable to estimate multiple regression equation. Based on the real measurement data from 2008 to 2012, we performed correlation analysis among the environmental variables related to the rainfall NPS pollutant runoff. Significance test was confirmed that T-P ($R^2=0.89$) and BOD ($R^2=0.79$) showed the highest similarity with the estimated regression equations according to the NPS pollutant followed by SS and T-N with good similarity ($R^2$ >0.5). In the case of regression equation to estimate the NPS pollutant loads, regression equations of multiplied independent variables by exponential function and the logarithmic function model represented optimum with the experimented value.

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.

Characteristics of First Flush in Highway Storm Runoff (강우시 발생하는 고속도로 유출수의 초기우수 특성 및 기준)

  • Kim, Lee-Hyung;Kang, Joohyon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.641-646
    • /
    • 2004
  • Vehicle emissions from highway landuse include different pollutants such as heavy metals, oil and grease and particulates from fuels, brake pad wear and tire wear. Since highways are impervious and have high pollutant mass emissions from vehicular activity, it is considered as stormwater intensive landuses. Therefore this research was performed to understand the magnitude of first flush and to suggest the criteria of first flush for storm runoff management in highways. The fractions of washed-off mass are very high in first 30% of runoff volume, which suggests a definition of first flush. The washed-off mass stabilizes after 30% of the runoff volume and it is apparent that treatment capacity in the early part of a storm is more valuable than treatment capacity in the later part of the storm. Using the criteria of "high" first flush and "medium" first flush, as 50% of the mass in the first 30% of the volume, and 30 to 50% in the first 30% volume, respectively, more than 30% of the storms showed high first flush. A "first flush friendly" best management practice(BMP), meaning a BMP that can treat a high percentage or all of the initial flow, would be advantageous up to 80% of the events.

An Estimation of NPS Pollutant Loads using the Correlation between Storm Water Runoff and Pollutant Discharge in a Small Urban Drainage Basin

  • Shin, Hyun-Suk;Yoon, Yong-Nam
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.99-114
    • /
    • 1994
  • Three purposes of this study are as follows : The first was the development of the extension method for the limited data observed in an urban drainage basin. The second was the analysis of the correlation between storm water runoff and NPS(non-point source) Pollutant discharge. The last was the calculation of the monthly and annual specific NPS loads using the established correlation. The selected model was the SWMM(Storm Water Management Model) developed by the US EPA(Environmental Protection Agency). As a result of this study, the best correlation between storm water runoff and NPS pollutants discharge was produced by the nonlinear correlation between runoff rate(mm/hr) and specific loads rate(kg/ha) for all pollutants studied : SS, COD, BOD, and TN. The best correlation through the analysis based on evently total mass was made by the linear correlation between the by the nonlinear correlation for CASE2. The NPS annual specific loads for the urban basin studed were 4,993 kg/ha/year for SS, 775 kg/ha/year for BOD, 3,094 kg/ha/year for COD, 257 kg/ha/year for TN, respectively. And the proportion of the NPS annual specific loads to the total annual specific loads were 41 % for SS, 13 % for BOD, 29 % for COD, and 21 % for TN.

  • PDF