• Title/Summary/Keyword: Storm Event

Search Result 249, Processing Time 0.034 seconds

Characteristics of Storm Runoff and Analysis of Its Correlation with Forest Properties (산림특성에 따른 강우유출수 유출특성 및 상관관계 분석)

  • Chung, WooJin;Chang, SoonWoong
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1007-1016
    • /
    • 2016
  • Environmental policy implementation has been strengthened to protect the source waters in Korea and to improve their water quality. Increasing of non-point source caused water quality problem continuously. Research on runoff from forests, which occupy over 65% of the land in korea, is insufficient, and studies on the characteristics and influences of storm runoff are necessary. In this study, we chose to compare the effects of land use in the form of two types of forest distribution and then gathered data on storm characteristics and runoff properties during rainfall events in these areas. Furthermore, the significance and influences of the discharges were analyzed through correlation analysis, and multilateral runoff characteristics were examined by deducing a formula through $COD_{Mn}$ and TOC regression analysis. At two forest points, for which the basin areas differed from each other, flow changed according to storm quantity and intensity. The peak discharge at point A, where the basin area was big, was high, whereas water-quality fundamental items (BOD, $COD_{Mn}$, and SS) and TOC density were high at point B where the slope and storm intensity were high. Effects of dissolved organic matter were determined through correlation analysis, and the regression formulas for $COD_{Mn}$ and TOC were deduced by regression analysis. It is expected that the data from this study could be useful as basic information in establishing forest management measures.

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF

An Estimation of Clogging Factors at Stormwater Grate Inlets with Consideration of Urban Area Characteristics (도시 지역특성을 고려한 빗물받이 유입구의 막힘계수 산정)

  • Kim, Jung-Soo;Song, Ju-Il;Yoon, Sei-Eui
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.595-598
    • /
    • 2007
  • Urban storm water collection and conveyance systems are critical components of the urban infrastructures. During a storm event, street grate inlets are usually loaded with debris by the first-flush runoff volume. Grate inlets are subject to clogging effects. Effective interception area of grate inlets was decreased by clogging. It also decreased the interception capacity of grate inlets and increased the inundation area in street. Therefore, it is necessary to analyze the clogging characteristics and interception capacity change by clogging for appropriate design and management of grate inlets. In this study, field survey was executed to investigate debris and clogging pattern of grate inlet in 9 areas. The clogging factor with consideration of urban area characteristics was estimated with the field survey results.

  • PDF

Effects of Sampling Frequency During Storm Period on Estimation of Pollutant Load from Paddy Field (논에서 일주기 수질조사시 채수빈도가 오염부하량 산정에 미치는 영향)

  • Han, Kuk-Heon;Yoon, Kwang-Sik;Cho, Jin-Goo;Cho, Jae-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.283-286
    • /
    • 2003
  • In order to examine effects of sampling frequency during rainfall-runoff process from paddy field on the estimation of pollution load, EMCs of several water sampling frequencies were examined. It was found that the difference of EMCs between one time sampling and two hours consecutive sampling during storm event showed $34.1{\sim}-19.1%$ for T-N, $55.4{\sim}-27.3%$ for T-P, $68.5{\sim}-41.0%$ for the SS, respectively. Five times sampling reduced difference of EMCs compared to those two hours interval sampling to $15.2{\sim}-15.2%$ for T-N, $20.0{\sim}-26.2%$ for T-P, $28.6{\sim}-35.7%$ for the SS, respectively.

  • PDF

A Study on the Proper Size of Rainwater Stored Tank in Submerged Districts Using SWMM Program (SWMM을 활용한 침수예상지역 우수저류조의 적정크기결정에 관한 연구)

  • Jang, Seung-Jae
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.69-76
    • /
    • 2009
  • The Storm Water Management Model(SWMM) by EPA is a dynamic rainwater-runoff simulation model used for single event or long-term simulation of runoff quantity and quality from primarily urban areas. The SWMM simulation program is operated by the site area, the weather date, conduit plan etc. on reference region. The purpose of this study was to analyze flood area, the duration of flooded and surcharged on the reference region. Without rainwater stored tank, the area of flooded and surcharged on reference area is similar to the area of reference region. But, With rainwater stored tank, the area of flooded and surcharged on reference area is much reduced compared to without rainwater stored tank. According to SWMM simulation results, the rainwater stored tank is located closer to site is more effective for reduction of duration of flooded and surcharged and flow rate.

Behavior of the Dissolved and Particulate Nutrient at Paddy Field Area (광역논에서의 용존성과 입자성 영양물질의 거동 특성)

  • Oh, Seung Young;Kim, Jin Soo;Jung, Gu Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.543-546
    • /
    • 2004
  • Nutrients behavior were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of $2001\~2003$. The average concentration of TN, TDN and TDP in drainage water was higher than that in irrigation water. On the other hand, the average concentration TP in irrigation water was higher than in drainage water. The ratio of TDN to TN accounted (or over $90\%$ and the ratio of TDP to TP accounted for $50\~70\%$. Especially the ratio of TDP to TP in drainage water was higher than that in irrigation water, suggesting that much of particulate component was reduced due to sedimentation and adsorption in paddy fields plots. Overall, particulate phosphorus usually account for 44 to $77\%$ of tile total phosphorus during storm events.

  • PDF

Thermospheric Wind Observation and Simulation during the Nov 4, 2021 Geomagnetic Storm Event

  • Wu, Qian;Lin, Dong;Wang, Wenbin;Ward, William
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Thermospheric wind observations from high to mid latitudes are compared with the newly developed Multiscale Atmosphere Geospace Environment (MAGE) model for the Nov 3-4 geomagnetic storm. The observation and simulation comparison shows a very good agreement and is better at high latitudes in general. We were able to identify a thermospheric poleward wind reduction possibly linked to a northward turning of the Interplanetary Magnetic Field (IMF) at ~22 UT on Nov 3 and an enhancement of the poleward wind to a southward turning near 10 UT on Nov 4 at high latitudes. An IMF southward turning may have led to an enhancement of equatorward winds at Boulder, Colorado near midnight. Simultaneous occurrence of aurora may be associated with an IMF By turning negative. The MAGE model wind simulations are consistent with observations in these cases. The results show the model can be a very useful tool to further study the magnetosphere and ionosphere coupling on short time scales.

Mega Flood Simulation Assuming Successive Extreme Rainfall Events (연속적인 극한호우사상의 발생을 가정한 거대홍수모의)

  • Choi, Changhyun;Han, Daegun;Kim, Jungwook;Jung, Jaewon;Kim, Duckhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.76-83
    • /
    • 2016
  • In recent, the series of extreme storm events were occurred by those continuous typhoons and the severe flood damages due to the loss of life and the destruction of property were involved. In this study, we call Mega flood for the Extreme flood occurred by these successive storm events and so we can have a hypothetical Mega flood by assuming that a extreme event can be successively occurred with a certain time interval. Inter Event Time Definition (IETD) method was used to determine the time interval between continuous events in order to simulate Mega flood. Therefore, the continuous extreme rainfall events are determined with IETD then Mega flood is simulated by the consecutive events : (1) consecutive occurrence of two historical extreme events, (2) consecutive occurrence of two design events obtained by the frequency analysis based on the historical data. We have shown that Mega floods by continuous extreme rainfall events were increased by 6-17% when we compared to typical flood by a single event. We can expect that flood damage caused by Mega flood leads to much greater than damage driven by a single rainfall event. The second increase in the flood caused by heavy rain is not much compared to the first flood caused by heavy rain. But Continuous heavy rain brings the two times of flood damage. Therefore, flood damage caused by the virtual Mega flood of is judged to be very large. Here we used the hypothetical rainfall events which can occur Mega floods and this could be used for preparing for unexpected flood disaster by simulating Mega floods defined in this study.

Evaluation of Major Storm Events Both Measured by Chukwooki and Recorded in Annals of Chosen Dynasty: 1. Qualitative Approach (조선왕조실록 및 측우기 기록에 나타난 주요호우사상의 평가: 1. 정성적 평가)

  • Yoo, Chul-Sang;Kim, Dae-Ha;Kim, Hyeon-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.533-543
    • /
    • 2007
  • This study characterized and qualitatively analyzed the storm events recorded in the Annals of Chosun Dynasty. First of all, the storm events are retrieved using the like Keun-Bi (big rain), Keun-Mul (high water), Hong-Soo (flood), and Pok-Woo (torrential rain). The storm events cited as Keun-Bi do not include any in detail explanation about the storm and damages, but the storm events cited as Keun-Mul, Hong-Soo, and Pok-Woo generally include in detail information. That is, the Keun-Bi was named simply based on the amount of rainfall, but the other three were named considering the runoff with significant damages. Evaluation of effective rainfall derived by the simple SCS method showed that most storm events named Keun-Bi had small antecedent five day rainfall amount to be categorized into AMC-1, but the others mostly into AMC-III. As result, the effective rainfall of Keun-Mul, Hong-Soo, and Pok-Woo were estimated much higher than those of Keun-Bi. Most storm events with lengthy explanation belong to the events with lots of damages, which also includes Keun-Mul, Hong-Soo, and Pok-Woo.

Flow Weighted Mean Concentration and Runoff -Mass Load Relationship of Pollutants Derived from Intensively Sampled Water Quality Data of a Paddy Field (논에서의 일주기 수질 조사로부터 유도된 오염물질의 강우 -유출 사상별 유량가중평균농도와 유출량- 유하부하량 관계)

  • 윤광식;최진용;한국헌;조재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.127-135
    • /
    • 2002
  • Water quality samples were taken for every two hours whenever runoff occurred by rainfall to investigate concentration variations of T-N, T-P and SS during runoff process from a paddy field. The difference between the highest concentration in a runoff event and flow weighted mean concentration for T-N, T-P, SS placed between 3.07∼40.16%, 11.44∼60.80%, and 15.11∼64.5%, respectively. The difference between the lowest concentration in event and event mean concentration for T-N, T-P, SS ranged between -7.24∼-31.84%, -11.59∼-47.86%, and -5.21∼-36.20%, respectively. The relationship between runoff and mass load was derived for each storm event using observed data. The relationship between runoff and mass load showed linear relationship regardless of water quality constituents and rainfall amount. The results suggested that relationship between T-N and T-P loads and runoff should be prepared separately in considering of fertilization effect and seasonal conditions. The relationship between SS and runoff should be made to reflect seasonal conditions and tillage effect.