• 제목/요약/키워드: Storage shear modulus

검색결과 95건 처리시간 0.017초

안티푸라민-에스® 로션의 레올로지 특성 연구 (Rheological Properties of Antiphlamine-S® Lotion)

  • 국화윤;송기원
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권3호
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

전기유변유체의 점탄성 특성에 관한연구 (Viscoelastic properties of electrorheological fluids)

  • 최윤대;김상국
    • 한국재료학회지
    • /
    • 제2권3호
    • /
    • pp.220-227
    • /
    • 1992
  • 전기유변유체(electrorheological fluid : ERF)는 크기가 $10^{-6}m$정도를 가진 분극성이 강한 입자 분말을 유전유체속에 혼합하여 만든 콜로이드용액으로서 외부전기 장에 의하여 액체상태로부터 겔(gel)상태로 상태변환을 한다. 상태변환과정은 가역과정이며 $10^{-3}$초 정도의 빠른 시간내에 이루어진다. 본 논문에서는 주기적응력이나 주기적 변형이 가해지는 강제진동실험을 통하여 ERF의 점탄성 특성을 조사하였다. 점탄성은 복소수로서 실수부인 동적전단탄성율(storage shear modulus, G')과 허수부인 동적손실율(loss modulus, G")의 합으로 표현된다. 동적전단탄성율은 강제진동의 진폭과 주파수의 함수로 외부전기장에 의하여 크게 변화되었으나 손실계수(loss factor, ${\eta}=G"/G'$)는 진동의 진폭, 진동수 및 외부전기 장에 거의 독립적이었다. 실험(1)은 강제진동의 진폭을 고정하고 진동수를 변화하는 방법(frequency sweep)과 실험(2)는 진동 진폭을 변화시키는 방법(amplitude sweep)으로 실행했다. 본 실험에서는 cornstarch입자를 corn oil에 혼합한 것과 zeolite입자를 silicone oil에 흔합한 콜로이드 용액이 ERF로서 사용되었으며 인가된 전기장은 약$(1~3){\times}10^6V/m$의 직류전기장이 가하여졌다.기장이 가하여졌다.

  • PDF

Properties and particles dispersion of biodegradable resin/clay nanocomposites

  • Okada, Kenji;Mitsunaga, Takashi;Nagase, Youichi
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2003
  • In this study, two types of biodegradable resins-based clay nanocomposites, in which organic montmorillonite clay was filled, were prepared by the direct melt blending method. In order to characterize the nanocomposite structure, wide-angle X-ray diffraction (WAXD) and TEM observation were performed. Characterization of the nanocomposites shows that intercalated and partially exfoliated structures were generated by the melt blending method. Mechanical and rheological properties of the nanocomposites were measured respectively. For the mechanical properties, there were improvements in tensile strength and Young's modulus of the nanocomposites due to the reinforcement of nanoparticles. The rheological behaviors of the nanocomposites were significantly affected by the degree of the dispersion of the organoclay. The storage modulus of the nanocomposites was measured and the degree of the dispersion of the organoclay was evaluated from the value of the terminal slope of the storage modulus. In addition, the quantity of the shear necessary for making the nanocomposite for melt intercalation method was estimated from the relationship between the value of the terminal slope of the storage modulus and the applied shear.

진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동 (Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields)

  • 송기원;장갑식
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권1호
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

Glucomannan의 유변학적 성질에 관한연구 (II) (A Study on the Rheological Properties of glucomannan(II))

  • 김경이
    • 유변학
    • /
    • 제9권1호
    • /
    • pp.27-32
    • /
    • 1997
  • GM 은 Amorphopallus Konjac K. Koch의 tuber의 주성분으로알카리 응고제를 첨가 함에 따라 열적으로 안정한 gel을 형성한다. GM에 침전제로 메탄올을 사용하여 4단계로 분 별하였고 각 분별물(F.1, F.2, F.3, F.4)들은 Mark-Houwink 식을 이용하여 분자량을 산출하 였다. Ubbelohde를 이용한 농도에 따른 환산점도로부터 고유 점성도값을 구한 결과 분자량 이 높은 분별물이 분자량이 낮은 분별물에 비하여 직선으로부터 벗어남을 알수 있었다. 또 한 고유점성도는 분자량이 증가할수록 증가하였고, 분자량 분포 범위가 broad하게 나타났다. GM용액의 frequency와 shear rate에 따른 viscosity를 측정한결과 낮은 frequency에서는 loss modulus(G")가 storage modulus(G")보다 큰 값을 가졌으나 높은 frequency에서는 G '가 G"보다 크게 나타났다. 이 현상은 분자들의 얽힘에 관한 시간 의존도로써 설명할수 있다. 즉높은 frequency에서는 탄소 사슬간의 얽힘들이 진동기간내에 분자결합이 끊어지기 에 충분한 시간을 갖지 못하여 그 조직이 교차 결합을 한 gel처럼 행동하게 되고 한편 낮은 frequency에서는 탄소사슬들의 얽힘이 풀리고 흐르기에 충분한 시간을 갖게된다. Shear rate에 따른 viscosity값과 frequency에 대한 dynamic viscosity값은 거의 유사한 변화를 나 타내었다.

  • PDF

광중합 복합레진의 중합초기 동적 점탄성의 변화 (THE CHANGE OF THE INITIAL DYNAMIC VISCO-ELASTIC MODULUS OF COMPOSITE RESINS DURING LIGHT POLYMERIZATION)

  • 김민호;이인복
    • Restorative Dentistry and Endodontics
    • /
    • 제34권5호
    • /
    • pp.450-459
    • /
    • 2009
  • 본 연구의 목적은 새로 개발한 점탄성 측정기를 사용하여 수종의 광중합 복합레진의 초기 동적 점탄성 변화를측정하는 것이다. 본 연구에 사용된 점탄성 측정기는 세 부분으로 구성되었다. 첫째, 시편이 놓여지는 parallel plates; 둘째, DC 모터와 크랭크로 이루어진 회전진동전단변형 (Oscillatory shear strain)을 발생시키는 부분; 셋째, 전자기적 토크센서를 이용한 응력 측정 부분으로 구성되었다. 본 점탄성 측정기는 최대 2 Ncm의 토크를 측정할 수 있으며, 광중합기의 스위치는 컴퓨터와 연동하여 데이터 획득을 시작할 때 동시에 켜지도록 하였다. 본 연구에서는 시판 중인 6종의 광중합 복합레진 [Z-100 (Z1), Z-250 (Z2), Z-350 (Z3), DenFil (DF), Tetric Ceram (TC), Clearfil AP-X (CF)]을 사용하였다. 점탄성 측정기를 사용하여 동적 회전전단실험을 시행하였다. 직경 3 mm인 유리막대로 구성된 parallel plates 사이에 $14.2\;mm^3$의 복합레진을 적용시켰으며, 6 Hz의 진동수와 0.00579 rad의 진폭으로 변형을 가하고 발생된 응력을 측정하였다. 광중합이 시작됨과 동시에 측정이 시작되었으며, 광중합 후 10초 동안 점탄성의 변화를 관찰하였다. 각 복합레진에 대해 5 회 반복하여 측정하였고, 실험은 $25{\pm}0.5^{\circ}C$에서 진행되었다. 측정된 변형-응력 곡선으로부터 복소전단탄성계수 G*, 저장전단탄성 계수 G', 손실전단탄성 계수 G"를 구하였고 G*가 10 MPa에 이르는 시간을 구하였다. 각 재료의 복소전단탄성계수 G*와 10 MPa에 이르는 시간에 대해 일원분산분석 (One-way ANOVA)과 사후검정 (Tukey 검정)을 시행하였다 (${\alpha}$= 0.05). 결과는 다음과 같다. 1.본 연구를 위해 제작한 점탄성 측정기는 광중합 복합레진의 중합 초기 10초 동안의 동적 점탄성 변화를 신뢰성 있게 측정 할 수 있었다. 2. 모든 복합레진은 광조사 개시 후 $1{\sim}2$초의 불응기를 지난 다음 급격한 전단탄성계수의 증가를 보였다. 3. 모든 복합레진은 광중합 10 초간 손실전단탄성계수보다 저장전단탄성계수의 높은 증가를 보였다. 4. 광중합 초기 10초 후 복소전단탄성계수 값은 $150.3{\sim}563.7\;MPa$로, Z-100이 가장 높았고, 그 다음 Clearfil, Z-250, Z-350, Tetric Ceram, DenFil의 순이었다. 5. 복소전단탄성계수가 10 MPa에 이르는 시간은 Z-100이 2.55초로 가장 빨랐고, DenFil이 4.06초로 가장 느렸다.

Preparation and rheological behavior of polystyrene/multi-walled carbon nanotube composites by latex technology

  • Woo, Dong-Kyun;Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.185-191
    • /
    • 2009
  • Polystyrene/multi-walled carbon nanotube (PS/MWCNT) composites were prepared by the use of latex technology. The monodisperse PS latex was synthesized by an emulsifier-free emulsion polymerization from styrene/potassium persulfate/water system in the presence of ethanol. The MWCNTs were first treated with acid mixture to eliminate impurities, dispersed in deionized water driven by ultrasonicator, and then mixed with the PS latex. From these mixtures, PS/MWCNT composites were prepared by freeze-drying and subsequent compression molding. In the small-amplitude oscillatory shear experiments, both complex viscosity and storage modulus increased with increasing MWCNT content. A pronounced effect of MWCNT content was observed, resulting in larger storage modulus and stronger yield behavior at low frequencies when compared to unmodified PS. It showed a transition from viscous to elastic behavior with increasing MWCNT content. Over the MWCNT content of 3 wt%, the storage modulus was higher than the loss modulus across all frequencies.

Silicate dispersion and rheological properties of high impact polystyrene/organoclay nanocomposites via in situ polymerization

  • Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.227-233
    • /
    • 2008
  • High impact polystyrene (HIPS)/organoclay nanocomposites via in situ polymerization were synthesized and their rheological properties were investigated. For the study, two types of organoclays were used: a commercially available organoclay, Cloisite 10A (C10A), and a laboratory-prepared organoclay having a reactant group, vinylclay (ODVC). The X-ray diffraction and transmission electron microscopy experiments revealed that the HIPS/ODVC nanocomposite achieved an exfoliated structure, whereas the HIPS/C10A nanocomposite achieved an intercalated structure. In the small-amplitude oscillatory shear experiments, both storage modulus and complex viscosity increased with increasing organoclay. A pronounced effect of the organoclay content was observed, resulting in larger storage modulus and stronger yield behavior in the low frequency region when compared to neat HIPS. The crossover frequencies associated with the inverse of a longest relaxation time decreased as the organoclay content increased. Over a certain value of ODVC content, a change of pattern in rheological properties could be found, indicating a solid-like response with storage modulus greater than loss modulus at all frequencies.

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

철도차량용 유리섬유직물/페놀릭 복합재의 가속노화 특성 (Aging Characteristics of Glass Fabric/Phenolic Composites in Train Carbody)

  • 윤성호;남정표;황영은;신광복
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.352-357
    • /
    • 2004
  • In this study. the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated through a 2.5KW accelerated environmental aging tester. Environmental factors such as temperature. moisture, and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile, bending, and shear specimens those are warp direction and fill direction were used to investigate the effects of environmental factors on mechanical properties of the composites. The glass fabric $\sharp$650/AP300 was used for the fabrication of specimens. Mechanical degradations for tensile, bending and shear properties were evaluated through a UTM. Also. storage shear modulus. loss shear modulus, and tan $\delta$ were measured as a function of exposure times through a dynamic mechanical analyzer. Finally exposed surfaces of the composites were examined using II scanning electron microscope.

  • PDF