• Title/Summary/Keyword: Storage capacity

Search Result 2,114, Processing Time 0.031 seconds

Bulky carbon layer inlaid with nanoscale Fe2O3 as an excellent lithium-storage anode material

  • Nguyen, Thuy-An;Lee, Sang-Wha
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.140-145
    • /
    • 2018
  • Bulky carbon layer uniformly distributed with nanoscale $Fe_2O_3$ was prepared via a direct carbonation of $Fe^{3+}$-polyacrylonitrile complexes at $700^{\circ}C$ under $N_2$ flow. The iron oxide carbon composites exhibited an excellent cycling performance for lithium storage with a reversible capacity of ${\sim}810mAh\;g^{-1}$ after 250 cycles at a current rate of $100mA\;g^{-1}$. The enhancement was mainly attributed to dual functions of bulky carbon layer which facilitated the lithium-ion diffusion and accommodated the volume changes of active $Fe_2O_3$ during charge/discharge process. Our novel chemical strategy is quite effective for scalable fabrication of high capacity lithium-storage materials.

Study on Thermal Performance Characteristics of CPC System Depending on Weather Conditions and Capacity of Heat Storage Tank (기상 조건과 축열조 용량에 따른 복합 포물형 집열기(CPC) 시스템의 열적 성능 특성에 관한 연구)

  • LIM, SOK-KYU;JUNG, YOUNG GUAN;KIM, KYOUNG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.58-66
    • /
    • 2019
  • Static compound parabolic collectors (CPCs) have advantages such as ease for fabrication and lower cost compared with other concentrating collectors. In this study, thermal performance analysis of CPC employing heat storage tank was carried out. The clearness index and capacity of heat storage tank are taken as the main parameters for numerical simulation. The effects of the parameters on the hourly and daily system performances ncluding the useful energy, heat loss, and collector efficiency were numerically investigated. Results showed that the system has a potential for efficient recovery of solar thermal energy.

Development of a Method for Calculating the Allowable Storage Capacity of Rivers by Using Drone Images (드론 영상을 이용한 하천의 구간별 허용 저수량 산정 방법 개발)

  • Kim, Han-Gyeol;Kim, Jae-In;Yoon, Sung-Joo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.203-211
    • /
    • 2018
  • Dam discharge is carried out for the management of rivers and area around rivers due to rainy season or drought. Dam discharge should be based on an accurate understanding of the flow rate that can be accommodated in the river. Therefore, understanding the allowable storage capacity of river is an important factor in the management of the environment around the river. However, the methods using water level meters and images, which are currently used to determine the allowable flow rate of rivers, show limitations in terms of accuracy and efficiency. In order to solve these problems, this paper proposes a method to automatically calculate the allowable storage capacity of river based on the images taken by drone. In the first step, we create a 3D model of the river by using the drone images. This generation process consists of tiepoint extraction, image orientation, and image matching. In the second step, the allowable storage capacity is calculated by cross section analysis of the river using the generated river 3D model and the road and river layers in the target area. In this step, we determine the maximum water level of the river, extract the cross-sectional profile along the river, and use the 3D model to calculate the allowable storage capacity for the area. To prove our method, we used Bukhan river's data and as a result, the allowable storage volume was automatically extracted. It is expected that the proposed method will be useful for real - time management of rivers and surrounding areas and 3D models using drone.

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

A Solution Procedure for Designing Automated Storage/Retrieval Systems (자동창고 설계를 위한 최적화 모델 및 해법에 관한 연구)

  • 나윤균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.9-14
    • /
    • 1995
  • A cost minimization model for designing AS/RS (Automated Storage/Retrieval Systtems) has been developed under the S/R (Storage/Retrieval) machine throughput rate and total storage capacity requirements. The objective function includes S/R machine cost storage rack cost, and interface conveyor cost. Since the model is a nonlinear integer programming problem which is very hard to solve with large problem size, the model is simplified using previous research results to be solved exactly and a simultion procedure is combined to verify that throughput rate requirements are satisfied.

  • PDF

Effects of Salting and Packaging on the Quality of Dombaeki (Shark Meat) during Storage (돔배기 저장중 염처리와 포장방법이 품질에 미치는 영향)

  • Lee, Hye-Lim;Park, Hyo-Jin;Lee, Shin-Ho;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.17 no.4
    • /
    • pp.444-450
    • /
    • 2010
  • We investigated the quality of Dombaeki (shark meat) treated without salting (NS), with salting (S), air-packed (A), and vacuum-packed (V), during storage at $4^{\circ}C$ and $-18^{\circ}C$. We explored water holding capacity, elasticity, total bacterial counts, pH, titratable acidity level, volatile basic nitrogen (VBN) value, and drip loss. Water holding capacity and elasticity values were better when salting and vacuum-packaging were employed than when samples were not salted and were packaged in air. The total bacterial counts in SV meat were significantly lower than in other samples. The pH of all samples increased slowly during storage, and the pH values of NSA samples were significantly higher than the pH values of other samples. The VBN level and drip loss of SV meat were the lowest of all samples during storage. The results show that salted vacuum-packed meat was of better quality than that stored without salting, and air-packed, regardless of storage temperature.

Structural Analysis on A Steel Roof LNG Storage Tank (강재 지붕형 LNG 저장탱크 구조안전성평가)

  • Lee, Seung-Rim;Park, Jang-Sik;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.40-44
    • /
    • 2009
  • This is a comparative structural analysis for a steel roof LNG storage tank that has some advantages relatively in designing larger scale tanks and construction cost, etc. compared with a conventional concrete roof LNG storage tank as the capacity of LNG storage tanks is bigger. Structural analysis was performed on a 200,000$k{\ell}$ steel roof LNG storage tank and a concrete of the same capacity in condition of three critical load combination cases, a normal operation, a LNG spillage and seismic case by using finite element method. And comparative structural safety evaluation was carried out by using strength ratio in places of concrete wall, foundation and roof with a quantitative method.

  • PDF

Estimation of Lifetime Data Storage Capacity for Human Senses (인간 감각 정보를 위한 평생 기억용량 평가)

  • You, Young-Gap;Song, Young-Jun;Kim, Dong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • This paper presents a capacity estimation of a storage system accumulating all data sensed during the lifetime of an individual human being. The calculation assumes modern data compression and data collection schemes based on wearable or implanted devices under ubiquitous environment. More than 76% of the storage area is found to be used for video data storage of common TV image quality. The remaining storage area is for data from other sensing organs including audio, taste, olfactory and tactual systems in addition to indexing information. Total storage area of around 600 tera bytes is needed to cover 100 years of human life including his fetal period.