• Title/Summary/Keyword: Storage & Transportation

Search Result 586, Processing Time 0.024 seconds

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

Current Status of Nuclear Waste Management (and Disposal) in the United States

  • McMahon, K.;Swift, P.;Nutt, M.;Birkholzer, J.;Boyle, W.;Gunter, T.;Larson, N.;MacKinnon, R.;Sorenson, K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The United States Department of Energy (US DOE) is conducting research and development (R&D) activities under the Used Fuel Disposition Campaign (UFDC) to support storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. R&D activities are ongoing at nine national laboratories, and are divided into storage, transportation and disposal. Storage R&D focuses on closing technical gaps related to extended storage of UNF. Transportation R&D focuses on ensuring transportability of UNF following extended storage, and addressing data gaps regarding nuclear fuel integrity, retrievability, and demonstration of subcriticality. Disposal R&D focuses on identifying geologic disposal options and addressing technical challenges for generic disposal concepts in mined repositories in salt, clay/shale, and granitic rocks, and deep borehole disposal. UFDC R&D goals include increasing confidence in the robustness of generic disposal concepts, reducing generic sources of uncertainty that may impact the viability of disposal concepts, and developing science and engineering tools to support the selection, characterization, and licensing of a repository. The US DOE has also initiated activities in the Nuclear Fuel Storage and Transportation (NFST) Planning Project to facilitate the development of an interim storage facility and to support transportation infrastructure in the near term.

Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel

  • Jeong, Gil-Eon;Choi, Woo-Seok;Cho, Sang Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2268-2276
    • /
    • 2021
  • Spent nuclear fuel, which can degrade during long-term storage, must be transported intact in normal transport conditions. In this regard, many studies, including those involving Multi-Modal Transportation Test (MMTT) campaigns, have been conducted. In order to transport the spent fuel safely, a tie-down structure for supporting and transporting a cask containing the spent fuel is essential. To ensure its structural integrity, a method for finding an optimum conceptual design for the tie-down structure is presented. An optimized transportation test model of a tie-down structure for the KORAD-21 metal cask is derived based on the proposed optimization approach, and the transportation test model is manufactured by redesigning the optimized model to enable its producibility. The topology optimization approach presented in this paper can be used to obtain optimum conceptual designs of tie-down structures developed in the future.

Development and Application of a Decision Support System for the Oil Pipeline Transportation and Storage Rates (송유관 요율결정 지원시스템의 개발 및 활용)

  • 송성헌;김우제;이문배
    • Korean Management Science Review
    • /
    • v.16 no.1
    • /
    • pp.51-61
    • /
    • 1999
  • Pipeline is an important transportation mode for ail products. The popeline transportation and storage rates affect the popeline usage, and the popeline usage also affects the transportation revenue and operating costs of the popeline. The purpose of our study is to develop a decision support system simulating popeline transportation and storage rates for maximizing the utilization and profitability of the oil pipeline and apply it to the real situation. To do this, a simulation model to help the decision maker decide the rates of the oil pipeline is first proposed. Second, a simulation program is developed, which enables the user to evaluate the various scenarios of oil transportation and storage rates. Finally, this program is applied to the case study of oil industry in korea.

  • PDF

Multiobjective Transportation Infrastructure Development Problems on Dynamic Transportation Networks (화물수송체계의 평가와 개선을 위한 다목적 Programming모델)

  • 이금숙
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.1
    • /
    • pp.47-58
    • /
    • 1987
  • A commodity distribution problem with intertemporal storage facilities and dynamic transportation networks is proposed. mathematical integer programming methods and multiobjective programming techniques are used in the model formulation. Dynamic characteristics of commodity distribution problems are taken into account in the model formulation. storage facility location problems and transportation link addition problems are incorporated into the intertemporal multicommodity distribution problem. The model is capable of generating the most efficient and rational commodity distribution system. Therefore it can be utilized to provided the most effective investment plan for the transportation infrastructure development as well as to evaluate the existing commodity distribution system. The model determines simultaneously the most efficient locations, sizes, and activity levels of storage facilities as well as new highway links. It is extended to multiobjective planning situations for the purpose of generating alternative investment plans in accordance to planning situations. sine the investment in transportation network improvement yields w\several external benefits for a regional economy, the induced benefit maximization objective is incorporated into the cost minimization objective. The multiobjective model generates explicitly the trade-off between cost savings and induced benefits of the investment in transportation network improvement.

  • PDF

Allocating Storage Spaces for Temporary Inventories Considering Handling, Transportation, and Storage Capacities (취급, 수송 및 저장능력을 고려한 임시 재고의 저장 공간 할당)

  • Won Seung-Hwan;Kim Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.11-25
    • /
    • 2006
  • Space may be a scarce resource in manufacturing shops, warehouses, freight terminals, and container terminals. This Paper discusses how to locate temporary storage Inventories In limited storage areas. A typical inventory is delivered from the location of the preceding process to the storage area and stored In the storage area during the certain period of time. And it may be relocated from the storage position to another. Finally. it is delivered from the final storage area to the location of the next process. Because this logistic process for an inventory requires handling activities, transportation activities, and storage spaces, the limitation in capacities of handling equipment, transportation equipment, and storage space must be considered when allocating spaces to the inventory. This problem Is modeled as a multicommodity minimal cost flow problem. And a heuristic algorithm for the Problem is proposed. Numerical experiments are presented to validate the mathematical model and the heuristic algorithm.

A software tool for integrated risk assessment of spent fuel transportation and storage

  • Yun, Mirae;Christian, Robby;Kim, Bo Gyung;Almomani, Belal;Ham, Jaehyun;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.721-733
    • /
    • 2017
  • When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this model.

ANALYSIS OF THE TRANSPORTATION LOGISTICS FOR SPENT NUCLEAR FUEL IN KOREA

  • Lee, Hyo-Jik;Ko, Won-Il;Seo, Ki-Seok
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.582-589
    • /
    • 2010
  • As a part of the back-end fuel cycle, transportation of spent nuclear fuel (SNF) from nuclear power plants (NPPs) to a fuel storage facility is very important in establishing a nuclear fuel cycle. In Korea, the accumulated amount of SNF in the NPP pools is troublesome since the temporary storage facilities at these NPP pools are expected to be full of SNF within ten years. Therefore, Korea cannot help but plan for the construction of an interim storage facility to solve this problem in the near future. Especially, a decision on several factors, such as where the interim storage facility should be located, how many casks a transport ship can carry at a time and how many casks are initially required, affect the configuration of the transportation system. In order to analyze the various possible candidate scenarios, we assumed four cases for the interim storage facility location, three cases for the load capacity that a transport ship can carry and two cases for the total amount of casks used for transportation. First, this study considered the currently accumulated amount of SNF in Korea, and the amount of SNF generated from NPPs until all NPPs are shut down. Then, how much SNF per year must be transported from the NPPs to an interim storage facility was calculated during an assumed transportation period. Second, 24 candidate transportation scenarios were constructed by a combination of the decision factors. To construct viable yearly transportation schedules for the selected 24 scenarios, we created a spreadsheet program named TranScenario, which was developed by using MS EXCEL. TranScenario can help schedulers input shipping routes and allocate transportation casks. Also, TranScenario provides information on the cask distribution in the NPPs and in the interim storage facility automatically, by displaying it in real time according to the shipping routes, cask types and cask numbers that the user generates. Once a yearly transportation schedule is established, TranScenario provides some statistical information, such as the voyage time, the availability of the interim storage facility, the number of transported casks sent from the NPPs, and the number of transported casks received at the interim storage facility. By using this information, users can verify and validate a yearly transportation schedule. In this way, the 24 candidate scenarios could be constructed easily. Finally, these 24 scenarios were compared in terms of their operation cost.