• Title/Summary/Keyword: Stomatal conductance

Search Result 211, Processing Time 0.037 seconds

Heat sensitivity on physiological and biochemical traits in chickpea (Cicer arietinum)

  • Jain, Amit Kumar
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.307-319
    • /
    • 2014
  • Four chickpea cultivars viz. kabuli (Pusa 1088 and Pusa 1053) and desi (Pusa 1103 and Pusa 547) differing in sensitivity to high temperature conditions were analyzed in earthern pot (30 cm) at different stages of growth and development in the year of 2010 and 2011. Pusa-1053 (kabuli type) showed maximum photosynthetic rate and least by Pusa-547 (desi type), whereas maximum cell membrane thermostability were recorded in Pusa-1103 and minimum in Pusa-1088. Among the treatments, the plants grown under elevated temperature conditions had produced 13.01% more significant data in comparison to plants grown under continuous natural conditions. Stomatal conductance were reduced 44.25% under elevated temperature conditions than natural conditions, whereas 35.56%, when plants grown under initially natural conditions upto 30DAS, then 30-60DAS elevated temperature and finally shifted to natural conditions till harvest. In case of Pusa-1103, stomatal conductance was maximum as compared to rest of 2.7% from Pusa-1053, 8.9% from Pusa-1088, and 10.3% in Pusa-547 throughout the study. Plants grown under continuous elevated temperature conditions had produced 15.30% and 15.32% more significant membrane thermostability index in comparison to continuous natural conditions at vegetative stage and 19.40% and 18.44% at flowering stage, while the better response was recorded at pod formation stage. Pusa-1053 had given 2.8% more membrane thermostability index than Pusa-1088 and Pusa-1103 had given 1.6% more membrane thermostability index than Pusa-547 in the present study. The membrane disruption caused by high temperature may alter water ion and inorganic solutes movement, photosynthesis and respiration. Thus, thermostability of the cell membrane depends on the degree of the electrolyte leakage.

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Photosynthetic Response of Rice Plant to Changes of Air Influx Rate into Photosynthetic Chamber (동화상내 공기유입속도의 변화에 따른 벼의 광합성반응)

  • 현동윤;최경구;김진기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.6
    • /
    • pp.526-530
    • /
    • 1994
  • This study was conducted to investigate photosynthetic response to four sequential air influx rate with rice(Oryza sativa L.)plants moved from a natural condition to constant condition with automatic regulation selected environmental variables on 13th~15th days after anthesis. In time course of photosynthetic response to increasing air influx rate(200-280-360-440 ml / min.), stomatal conductance decreased rapidly at the beginning after treatment and then oscillated with a free-running period of a approximately 1 hour to 1 hour 30 minutes until reached up to steady-state condition. Similar change was also observed $CO_2$ assimilation rate. Stomatal conductance decreased throughout the air influx rate sequence, but the rate of decrease was similar to the decrease in $CO_2$ assimilation rate observed under continuous air influx rate conditions. In starch granules during grain filling period under air influx rate(440 ml / min.) , compound starch granules were loosing and a number of hollows were observed in surface of single starch granules. Evidences from several approaches indicate that synchronization of stomatal conductance and$CO_2$ assimilation rate was closely inter-related tinder increase of air influx rate and increase of air influx rate influenced the$CO_2$ uptake in photosynthetic processes and compound starch granule, as 'end products' of photosynthesis.

  • PDF

Ideal Leaf Type on Leaf Shape and $\textrm{CO}_2$ Use Efficiency of Different Seed Size Cultivar in Soybean (엽형 및 $\textrm{CO}_2$ 이용효율에 따른 콩 입중별 이상초형 연구)

  • 이강세;전병무;김영진;국용인;박호기;박문수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.243-247
    • /
    • 2003
  • To examine ideal leaf types with higher $\textrm{CO}_2$ assimilates and different seed sizes, 12 soybean varieties were planted on the pot in a plastic house covered with glass. Leaf function based on stomatal conductance and $\textrm{CO}_2$ assimilation in soybean is different in seed size and leaflet shape. Mean $\textrm{CO}_2$ assimilation of a single leaf was 19.66 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$ and showed higher in small seed cultivars with narrow leaflet than that of small seeds with wide leaflet (18.29 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$), but within large seed groups, it was higher in wide leaflets (19.17 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$) than narrow leaflet cultivars (17.45 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$). In small seed and narrow leaflet cultivars, stomatal conductance ranged from 0.14 to 0.15 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$, while $\textrm{CO}_2$ assimilation ranged from 19 to 20 $\mu\textrm{molm}^{-2}\textrm{s}^{-1}$. The Photosynthetic rate was closely related to stomatal conductance, transpiration and water use efficiency.

Eco-physiological Responses of Two Populus deltoides Clones to Ozone

  • Yun, Sung-Chul;Kim, Pan-Ki;Hur, Jae-Seoun;Lee, Jae-Cheon;Park, Eun-Woo
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • One-year-old cottonwood (Populus deltoides Bartr.) clones, which were classified as sensitive or tolerant, were exposed to 150 n1/1 ozone (O$_3$) over 8 days for 8 hours each day under glass chamber conditions with natural sunlight. The leaves of the sensitive clone had black stipple and bifacial necrosis after $O_3$ treatment. Photosynthesis and stomatal conductance were measured before, during, and after the $O_3$ treatment. The photosynthetic rates due to $O_3$ treatment were decreased 51 percent and 34 percent on the sensitive and tolerant clone, respectively. The stomatal conductance of the sensitive clone was more than 40 percent higher than that of the tolerant clone regardless of the $O_3$ treatment. As light intensity increased, the $O_3$ effect on photosynthesis was clear. Compared to the previous growth chamber studies, our natural light exposure system was able to maintain a stable photosynthetic responses of the control treatment throughout the fumigation period. In addition, changes in assimilation versus intercellular $CO_2$ concentration (A/C curves) showed that $O_3$ decreased the slope and asymptote of the curves for the sensitive clone. This indicates that $O_3$ decreases the biochemical capacity of photosynthesis on the sensitive clone. Chlorophyll contents and fluorescence of the two clones were analyzed to examine the $O_3$ effects on photosystem 11, but $O_3$ did not impact these variables on either clone. Although the tolerant clone did not show any foliar injury, we could not find any ecophysiological defensive responses to $O_3$ treated. Stomatal conductance of the tolerant clone was originally much lower than that of the sensitive one. Thus, the mechanisms of the tolerant clone in this system are to narrowly open stomata and efficiently maintain photosynthesis with a more durable biochemical apparatus of photosynthesis under $O_3$ stress. The sensitive clone has higher photosynthetic capacity and more efficient light reaction activity than the tolerant one under charcoal filtered condition, but is not as resilient under stress.

  • PDF

Influence of Drought on Leaf Growth and Water Potential in Tobacco (한발이 담배 잎의 생장과 수분 포텐셜에 미치는 영향)

  • 이상각;강병화;신주식;변주섭
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.632-639
    • /
    • 1997
  • The experiment which imposed the water stress to tobacco(Nicotiana tabacum L.) plant was carried at the late of maximum growth period. In order to know the influence of drought stress on the growth and developmemt of tobacco leaves of different position and to elucidate the physiological response of plant to various soil water content, stomatal conductance, and leaf water potential were measured. The drought stress at the maximum growth period negatively affected to the overall growth characteristics of shoot. The response of the growth was small at the middle and the lower leaves, and great at the upper leaves. The relative water content of upper, middle, and lower leaves at the fifth day after treatment were 74, 64, and 59%, respectively, as soil water content was reduced by 4.3%. This suggested that the wilting point of tobacco leaf was about 75%. The leaf water potential was -0.58 MPa in control and dropped to -1.20 MPa at the fifth day after treatment. This indicated that wilting of leaf may occur at the condition in which the difference of water potential between treatment and control, well watered, was greater than about 20%. Stomatal conductance at the fifth day after treatment dropped from 12 mol /$\textrm{m}^2 sec^{-1}$ to 0.8 mol /$\textrm{m}^2 sec^{-1}$ in the middle and the upper leaves. Stomatal conductance of lower leaves already matured were not affected highly by drought stress at the maximum growth period, but maturing leaves, middle and upper leaves, were highly affected by limitation of soil water.

  • PDF

Studies on the changes in phenological, growth and physiological responses of Silene capitata Kom., an endangered plant in Korea, under climate change treatment

  • Park, Jae-Hoon;Han, Young-Sub;Lee, Eung-Pil;Lee, Seung-Yeon;Jeong, Heon-Mo;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.305-313
    • /
    • 2019
  • Background: This research aims to study the effect of climate change on the phenology, growth, and physiological traits of Silene capitata Kom., a Korean endangered species II. This study increased $CO_2$ concentration in a closed glass greenhouse, with the daily mean temperature and $CO_2$ concentration respectively being $4.61^{\circ}C$ and 93.63 ppm higher than the outside temperature (ambient conditions, control). The seeds of S. capitata were sown in control and treatment environments in March 2013 while seedlings were transplanted into individual pots in May 2013. To research phenological changes, the first day of the flowering and ripening of the plants transplanted in 2013 and first day of leafing in 2014 were observed. The growth and physiological responses of mature leaves were also studied in 2013. Results: There was no difference in the first day of flowering, but the first day of ripening was earlier in the treatment group than the control group. There was no difference in the number of rosette leaves between the two groups, but leaf area was wider in the treatment group than the control group. Transpiration rate and stomatal conductance were higher in the treatment group than the control group, chlorophyll content decreased, and photosynthetic rate and water use efficiency were the same for both groups. As a result of simple regression analysis among the transpiration rate, stomatal conductance, photosynthetic rate, and water use efficiency, stomatal conductance increased when transpiration rate increased. Stomatal conductance increased with photosynthetic rate in the control unlike in the treatment group. The photosynthetic rate and water use efficiency increased with transpiration rate in the control group unlike in the treatment group. Furthermore, water use efficiency increased as photosynthetic rate increased in both groups. Conclusion: Due to high $CO_2$ concentration, the photosynthetic rate was no longer controlled by the stomata, which appeared to suppress the excessive production of photosynthetic products by reducing chlorophyll content. It is believed that the phenological responses of S. capitata under climate change conditions will advance and that stable growth will be difficult in regions lacking moisture due to the high transpiration rate.

Effects of CaCl2 on Gas Exchange and Stomatal Responses in the Leaves of Prunus serrulata (염화칼슘이 벚나무 잎의 가스교환 및 기공반응에 미치는 영향)

  • Je, Sun Mi;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.303-308
    • /
    • 2016
  • To investigate the effect of calcium chloride ($CaCl_2$) using for deicing salts in winter on gas exchange and stomatal responses of 3-year-old Prunus serrulata, we treated twice (1 L) $CaCl_2$ solution (0.5%, 1.0% and 3.0%) in the root zone before leaf unfolding. Stomatal conductance ($g_s$), photosynthetic rate ($P_n$), transpiration rate ($T_r$) and water use efficiency (WUE) in the leaves of P. serrulata were decreased with increasing of $CaCl_2$ concentration. Even though stomatal conductance and photosynthetic rate were reduced by $CaCl_2$, intercellular $CO_2$ concentration ($C_i$) in $CaCl_2$ treatments has similar or higher values compared with control. These results suggest that non-stomatal limitation as well as stomatal limitation induced the reduction of photosynthetic rate together. On the other hands, treatment of $CaCl_2$ before leaf unfolding also affected leaf morphology traits. We proposed that reductions of stomatal length and leaf size and high pore density with increasing salinity is adaptative mechanism to reduce the water loss in plant.

Effect of Soil Water Potential on Stomatal Conductance and Photosynthesis of Wasabia japonica Matsum (토양수분(土壤水分)포텐셜이 고추냉이의 기공전도도(氣孔傳導度)와 광합성(光合成)에 미치는 영향(影響))

  • Choi, Sun-Young;Lee, Kang-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.4
    • /
    • pp.288-293
    • /
    • 1996
  • This study was investigated to obtain basic information for the development of irrigation plans in upland cultivation of Wasabi. Changes of stomatal conductivity and photosynthetic rate of Wasabi, and of the soil water potential during withholding watering were analysed. The stomatal conductivity of Wasabi at $1000{\mu}Em^{-2}s^{-1}$ light intensity was $70mmolem^{-2}s^{-1}$, which was about 49% lower than that of Chinese cabbage, $138mmolem^{-2}s^{-1}$. The temporal changes of light intensity during the daytime did not influence the stomatal conductivity. The soil water potential that decreased stomatal conductivity in Wasabi was about - 50kPa at 10 AM, and about - 30kPa at 3 PM. The photosynthetic rate of Wasabi at$1000{\mu}Em^{-2}s^{-1}$ light intensity was $7.6mgdm^{-2}hr^{-1}$, which was about 50% lower than that of Chinese cabbage, $15.3mgdm^{-2}hr^{-1}$. The duration required for a stable photosynthetic rate was longer in Wasabi than in Chinese cabbage. The soil water potential that decreased photosynthetic rate in Wasabi was about - 50kPa at 10 AM, and about - 30kPa at 3 PM. The stomatal conductivity and photosynthetic rate showed significant positive correlation at various soil water potential. The results indicated that irrigation in wasabi could be done during the daytime when the soil water potential is above - 30kPa, which does not decrease stomatal conductivity and photosynthesis in Wasabi.

  • PDF