• Title/Summary/Keyword: Stokes' stream function

Search Result 36, Processing Time 0.024 seconds

Computation of Incompressible Flows Using Higher Order Divergence-free Elements (고차의 무발산 요소를 이용한 비압축성 유동계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.9-14
    • /
    • 2011
  • The divergence-free finite elements introduced in this paper are derived from Hermite functions, which interpolate stream functions. Velocity bases are derived from the curl of the Hermite functions. These velocity basis functions constitute a solenoidal function space, and the gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into its solenoidal and irrotational parts, and the decoupled Navier-Stokes equations are then projected onto their corresponding spaces to form appropriate variational formulations. The degrees of the Hermite functions we introduce in this paper are bi-cubis, quartic, and quintic. To verify the accuracy and convergence of the present method, three well-known benchmark problems are chosen. These are lid-driven cavity flow, flow over a backward facing step, and buoyancy-driven flow within a square enclosure. The numerical results show good agreement with the previously published results in all cases.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

Force upon a Body due to Neighboring Singularity (3차원 물체 부근에 위치한 특이점이 물체에 작용하는 힘)

  • Choi, Jin-Young;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.250-257
    • /
    • 2017
  • It is desirable to have a way to predict the pressure drag due to various appendages attached to stern. As a mathematical model for these, a sphere and a singularity behind it, both in the uniform flow can be considered. We may use the Butler's sphere theorem to find the Stokes' stream function when the resulting flow is axisymmetric, and then the extended Lagally's theorem to get the force upon the sphere due to the singularity. Assuming the separation distance between the sphere and the singularity is small, the leading order approximation for the force is obtained and it is found out that if the separation distance and the square root of the strength of the dipole are of the same order, the effect of the image of the dipole with respect to the sphere is the most important.

Computation of the Slow Viscous Flow about a Normal Plate (수직평판 주위를 흐르는 느린 점성류의 수치해석)

  • 인기문;최도형;김문언
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2329-2338
    • /
    • 1993
  • An accurate analysis procedure to solve the flow about a flat plate at various incidences has been developed. The Navier-Stokes equations of stream function and vorticity form are solved in a sufficiently large computational domain, in which the grid lines are mutually orthogonal. The details of the flow near the singularity at the tip of the plate is well captured by the analytic solution which is asymptotically matched to the numerically generated outer solution. The solution for each region is obtained iteratively : the solution of one (inner or outer) region uses that of the other as the boundary condition after each cycle. The resulting procedure is accurate everywhere and also computationally efficient as the singularity has been removed. It is applied to the flat plate for a wide range of Re : the results agree very well with the existing computation and experiment.

SPATIAL BEHAVIOR OF SOLUTION FOR THE STOKES FLOW EQUATION

  • Liu, Yan;Liao, Wenhui;Lin, Changhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.397-412
    • /
    • 2011
  • In this paper, the equation of the transient Stokes flow of an incompressible viscous fluid is studied. Growth and decay estimates are established associating some appropriate cross sectional line and area integral measures. The method of the proof is based on a first-order differential inequality leading to an alternative of Phragm$\'{e}$n-Lindell$\"{o} $f type in terms of an area measure of the amplitude in question. In the case of decay, we also indicate how to bound the total energy.

STUDY ON TWO-DIMENSIONAL LAMINAR FLOW PAST A VERTICAL PLATE IN A MICROCHANNEL (마이크로채널 내의 수직 평판을 지나는 2차원 층류유동장에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.233-238
    • /
    • 2010
  • A two-dimensional laminar flow past a vertical plate in a microchannel is investigated. At far upstream and downstream from the plate in the microchannel, the plane Poiseuille flow exists. The Stokes flow for this microchannel is investigated analytically and then the laminar flow by numerical method. For the Stokes flow analysis, the method of eigenfunction expansion is used. From the results, the streamline pattern and the pressure distribution are plotted, and the additional pressure drop induced by the plate and the force exerted on the plate are calculated as functions of the length of the plate. For the laminar flow, finite difference method (FDM) is used to obtain the vorticity and the stream function. When the Reynolds number exceeds a critical value, a pair of viscous eddies appears behind the plate.

  • PDF

Study on Two-Dimensional Laminar Flow Through a Finned Channel (박막이 부착된 채널내의 2차원 층류 유동장에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.545-550
    • /
    • 2001
  • A two-dimensional laminar flow through a channel, on which a couple of symmetric vertical fins are attached, is investigated. The stokes flow for this channel flow is investigated analytically and laminar flow numerically. For analytic solution, the method of eigen function expansion and collocation method are employed. For numerical solution, finite difference method(FDM) is used to obtain vorticity and stream function. From the results, streamline patterns are shown and the pressure drop due to the attached fins is calculated, which depends on the length of fins and Reynolds number. While $Re, streamline pattern is symmetric, a pair of additional asymmetric solutions appear for $Re>Re_c$, where the critical Reynolds number $Re_c$ depends on the length of the fin.

  • PDF

Analysis of Steady Vortex Rings Using Contour Dynamics Method for Fluid Velocity

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2022
  • Most studies on the shape of the steady vortex ring have been based on the Stokes stream function approach. In this study, the velocity approach is introduced as a trial approach. A contour dynamics method for fluid velocity is used to analyze the Norbury-Fraenkel family of vortex rings. Analytic integration is performed over the logarithmic-singular segment. A system of nonlinear equations for the discretized shape of the vortex core is formulated using the material boundary condition of the core. An additional condition for the velocities of the vortical and impulse centers is introduced to complete the system of equations. Numerical solutions are successfully obtained for the system of nonlinear equations using the iterative scheme. Specifically, the evaluation of the kinetic energy in terms of line integrals is examined closely. The results of the proposed method are compared with those of the stream function approaches. The results show good agreement, and thereby, confirm the validity of the proposed method.

AXISYMMETRIC STOKES FLOW PAST A DISK IN A CIRCULAR TUBE (원관 내의 디스크를 지나는 축대칭 스톡스 유동)

  • Jeong, Jae-Tack
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.96-101
    • /
    • 2016
  • A two-dimensional Stokes flow past a circular disk in a circular tube is analyzed. The circular disk is located coaxially with the circular tube and the Hagen-Poiseuille flow exists at upstream and downstream far from the circular disk. The Stokes approximation is used and the flow is investigated analytically by using the method of eigenfunction expansion and the method of least square. From the analysis, the stream function and the pressure of the flow field are obtained, and the streamlines and pressure distribution are shown. Also, the pressure and shear stress distributions on the circular disk and circular tube wall are calculated, and shown for some typical radii of the circular disk. The additional pressure drop induced by the disk and the drag force exerted on the disk are compared as functions of the radius of the circular disk, and it is shown that the shear force on the wall of the tube increases due to the disk.

STOKES FLOW THROUGH A MICROCHANNEL WITH PROTUBERANCES OF STAGGERED ARRANGEMENT (엇갈린 배열의 돌출물들이 존재하는 마이크로채널 내의 스톡스 유동)

  • Son, Jeong Su;Jeong, Jae-Tack
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.109-115
    • /
    • 2015
  • In this study, the Stokes flow in the microchannel is analysed where the semicircular protuberances with constant spacing are attached on the upper and lower walls with staggered arrangement. For the low Reynolds number flow in microchannel, Stokes approximation is used and the periodicity and symmetry of the flow are considered to determine the stream function and pressure distribution in the flow field by using the method of least squared error. As results, the streamline patterns and pressure distributions in the flow field are shown for some specific values of the size and spacing of the protuberances, and shear stress distributions on the surface of semicircular protuberances are plotted. Especially, for an important physical property, the average pressure gradient along the microchannel is obtained and compared with that for the case of in-phase arrangement of the upper and lower protuberances. And, for the small clearance between the protuberances of upper and lower walls or between the protuberances and the opposite wall, the average pressure gradient is derived from the lubrication theory and compared with that of the present study.