
1. Introduction

A water-jet can be used as one of the propulsion systems for ships 
and marine life. When a jet is injected to obtain thrust, a vortex ring is 
formed at a nozzle and then propagated downstream (Krueger et al., 
2008). Furthermore, a vortex ring is generated due to volcanic eruption 
or nuclear explosion (Akhmetov, 2009). 

The flow of a vortex ring is formulated with the Helmholtz vorticity 
equation in inviscid and incompressible fluids (Batchelor, 1967). A 
steady vortex ring was first reported by Helmholtz (1867) who 
examined a vortex ring of an small circular cross section, while a 
spherical vortex was first analyzed by Hill (1894). Norbury (1973) 
analyzed a vortex ring in a steady state for general circumstances, 
which is referred to as the Norbury–Fraenkel family (N-F family) of 
vortex rings. 

A dynamic analysis is required for analyzing the instability due to 
the disturbance or interaction between vortex rings. A contour 
dynamics (CD) method for fluid velocity is used for analyzing the 
complex evolution of the contour of a vortex core. The CD method is a 
two-dimensional or axisymmetric flow analysis method due to the 
isolated vorticity in an inviscid, incompressible, and irrotational flow 
field (Pullin, 1992; Smith et al., 2018). The CD method can drastically 

reduce the burden of computations because the computation is 
performed in the form of line integrals on the boundary contour of the 
vorticity region. The fluid velocity on the contour is calculated using 
the CD method and then applied with time integrals to estimate the 
dynamic changes in the shape of the vortex core. Zabusky et al. (1979) 
introduced the CD method in dynamic analysis of two-dimensional 
vortex patches. Various examples of dynamic analysis for three- 
dimensional axisymmetric vortex rings are provided in the study by 
Shariff et al. (1989).

In this study, the CD method was applied to the analysis of the N-F 
family of vortex rings which are flows in steady state. Choi (2020) 
combined the CD method for a stream function (Shariff et al., 1989) 
and the direct shape-calculation method, and thus obtained results that 
were superior that those reported by Norbury (1973) wherein surface 
integrals and Fourier analysis were used. As a follow-up study to Choi 
(2020), in this study, we analyzed the N-F family of vortex rings using 
the CD method for fluid velocity examined in studies by Shariff et al. 
(1989) and Shariff et al. (2008). A stream function has been mostly 
used for analyzing a vortex ring in a steady state (Batchelor, 1967; 
Fraenkel, 1970; Fraenkel, 1972; Norbury 1973). In this study, we 
examined whether the CD method for fluid velocity, which is used in 
dynamic analysis, can also be applied to the analysis of a vortex ring in 
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a steady state.
By applying the boundary conditions of a vortex core to the fluid 

velocity determined via contour integral, we proposed nonlinear 
simultaneous equations for the forward speed of a vortex ring and core 
shape nodal points. The shape nodal points and forward speed were 
determined via iterative calculations by applying an additional 
conditional equation, which specified that the speed of vortex center 
and impulse center were the same. The characteristics of core shapes 
and vortex rings proved that the analytical method used in this study is 
valid based on the comparison with previous results.

2. Problem Formulation 

The fluid is assumed as inviscid and incompressible. In Fig. 1, the 
core of a vortex ring is analyzed, which is a rotational flow present in 
an irrotational and infinite flow field. When cylindrical polar 
coordinates, as shown in the figure, are introduced for analyzing an 
axisymmetric flow for the -axis, the fluid velocity vector   and 
vorticity vector  are as follows:

 



 (1)

  ∇×  
 (2)

For an axisymmetric flow, the Helmholtz vorticity equation can be 
expressed as follows (Batchelor, 1967):



 
   (3)

Fig. 1 Core of vortex ring and cylindrical polar coordinates

Based on Eq. (3), vorticity   is proportional to  inside the core, 
and it is expressed in the equation below. Whereas it is an irrotational 
flow outside the core.


  inside 

 outside 
(4)

, where  denotes the core boundary, and  is a constant. The 
aforementioned formulation is also reported in Choi (2020).

The fluid velocity vector   can be calculated using the Green’s 2nd 
identiy (Shariff et al., 1989; Shariff et al., 2008) as follows:
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However, the curl of vorticity vector in Eq. (5) exhibits the 
following behavior due to the jump in vorticity across the core 
boundary  in Eq. (4).

∇×  
inside 

function behavior across 
(6)

Therefore,   in Eq. (5) can be expressed as the sum of the integrated 
value inside the core   and integrated value in the small region 

crossing the boundary   as follows:

   (7)

According to Shariff et al. (1989) and Shariff et al.(2008),   and 
  are determined based on the following equations, which are 
expressed as contour integrals.
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, where , , and path  are defined in Fig. 2 (Norbury, 1973; Choi, 
2020). Point  in the figure is the mid-point between point  and point 
. Furthermore,  and  denote complete elliptic integrals of 
the first and second kinds, respectively (Gradshteyn and Ryzhik, 
2000), and modulus is defined as follows:

 ′ ′

′ (12)

  and   are calculated using Eqs. (7)–(9) as follows:
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Fig. 2 Meridional cross section of the core of vortex ring

When  ∈ in Eqs. (13) and (14), the movement of a vortex ring 
can be analyzed. In this study, the N-F family of vortex rings, which 
are in a steady state, were analyzed. In this case, a vortex ring advances 
forward in the positive -direction at a constant speed . Given that 
the core boundary  exhibits the characteristics of a material boundary, 
it should satisfy the following impermeable boundary condition.

⋅  
cos

sin  cos for  on  (15)

To define the size of a core, Norbury (1973) expressed the cross- 
sectional area   of the core using the ring radius  in Fig. 2 and 
non-dimensionalized mean core radius  as follows:


  (16)

Circulation (), vortical impulse (), and kinetic energy () of a 
inviscid vortex ring are invariant and expressed as follows (Lamb, 
1932):
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, where   denotes fluid density, and  denotes Stokes’ stream 
function.
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Furthermore, forward speed  can be derived by determining 
vorticity center ( ) and impulse center () using Eq. (17) and (18), 
respectively, and then taking their time derivatives (Lamb, 1932). By 
considering circulation and impulse as invariants and using the 
Reynolds transport theorem,  can be expressed as follows: 
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In this study, physical quantities were non-dimensionalized as the 
methods in studies by Norbury (1973) and Choi (2020).
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, where   denotes the core volume, and symbol (~) denotes 
non-dimensionalized physical quantities. For the convenience of 
expression, symbol (~) is omitted henceforth when expressing 
non-dimensionalized physical quantities.

Eqs. (13) and (14), which are fluid velocity components, can be 
non-dimensionalized as follows:
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For expressing contour shapes, radius  from point  and the 
parameter angel  are introduced as shown in Fig. 2 (Norbury, 1973; 
Choi, 2020).

 sin    cos for  on  (30)

Non-dimensionalized cross-sectional area of the core, circulation, 
and impulse are as follows (Choi, 2020):
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For a given value of , in this study, we aim to ensure that the fluid 
velocity components calculated from Eqs. (28) and (29) satisfy the 
boundary conditions in Eq. (15) and to find a contour shape whose 
cross-sectional area satisfies Eq. (31). 

Pozrikidis (1986) demonstrated that kinetic energy in Eq. (19) can 
be calculated using line integral as shown below.
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However, the stream function value satisfies the following relation 
on contour  (Norbury, 1973; Choi, 2020).

   


  const for  on  (35)

, where constant  can be calculated based on the method proposed by 
Choi (2020) using the deduced contour shape. By substituting Eq. (35) 
into Eq. (34) and considering the calculation equations of  and , 
kinetic energy can be expressed as follows:
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The kinetic energy was computed using a two-dimensional integral 
in Eq. (34) because the fluid velocity cannot be determined if the CD 
method for a stream function is used (Choi, 2020). By using the CD 
method for the fluid velocity proposed in this study, we can 
substantially reduce the number of computations because contour 
integral in Eq. (36) is used in computations.

 values deduced from vortical center and impulse center are as 
follows:
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3. Numerical Analysis Method 

Considering the shape symmetry, the shape is discretized using 
nodal points and segments, as shown in Fig. 3, to determine the 
contour shape (Choi, 2020).

Based on the definition of point  (Fig. 2) and symmetry, the 
following relations are established.

  ,     ,      , (39)


   
 , 

  ,   
   

Fig. 3 Discretization of contour (Choi, 2020)

    
  ,     

  ,     



sin , 

        
cos  for   ∼ (40)

If  number of  to  , which satisfy Eqs. (15) and (31), can be 
determined for given , then the discretized shape of contour can be 
determined. Furthermore, the forward speed  is an unknown value 
that should be determined. Therefore, the total number of unknowns is 
. Given that Eq. (15) is automatically satisfied if the field point is 



 or   

  
, the number of conditional equations that can 

be applied using this equation is . The following conditional 
equation determined from the relation between Eqs. (37) and (38) can 
be used; the total number of conditional equations is  when Eq. 
(31) is used, and therefore,  unknowns can be calculated.
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To determine the solution for  nonlinear system of equations, 
an initial shape was assumed and an iterative method was applied 
(Choi, 2020). In this study, Broyden’s method was applied as the 
iterative method (Press et al., 1992). Furthermore, angle was divided 
into equal intervals.

Contour integrals in Eq. (28) and Eq. (29) are summed as segment 
integrals as follows:
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, where   is the field point, and   denotes the -th segment. In 
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this study, segments were simplified as linear segments for taking 
integrals (Shariff et al., 1989; Shariff et al., 2008; Choi, 2020).

′    ′    (46)

where     


     


  ≤ ≤

Eq. (46) can be substituted into Eqs. (44) and (45) as follows:





  



 











 








 (47)





  











  (48)

When ≠ and ≠, general numerical integrals can be 
considered because integrands of Eqs. (47) and (48) show a 
non-singular behavior. In this study, numerical integrals were 
performed using three-point Gauss–Legendre quadrature (Choi, 2020). 

However, when    or   , integrals should be performed 
by considering logarithmic singularity generated when   or  , 
respectively. When   , Eqs. (47) and (48) are expressed as follows.
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Based on the methods proposed by Shariff et al. (1989), Shariff et al. 
(2008), and Choi (2020),  and  were asymptotically expanded at 
  to take integrals analytically.
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where   
 



In Eq. (51), the integration values calculated by setting   are 
presented in Appendix. When   

   and   
  , 

the signs of  and   are reversed in Eqs. (49)–(50) and Eqs. (A1)–
(A3); when     is used instead of  , the signs of the integrals are 
reversed.

A derivative of a contour curve is required to find cos and sin, 
which are the components of a normal vector in the boundary 
condition of Eq. (15).

cos  

cos
 sin  

sin (52)

A Fourier cosine series was used in this study to determine the slope 
of a continuous contour curve from the discretized contour shape.
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  is approximated from Eq. (53) as follows:
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The solution does not converge or cannot be determined even when 
numerical differentiation was performed by using the nearby nodal 
points or derivatives of a cubic spline curve to determine the derivative 
of the contour curve. 

4. Analysis Results 

The initial guess for the iterative method was set similar to the 
method in a study by Choi (2020). When ≤, a circle with a 
radius of  was set as the initial guess for counter; for  ≤, a 
circle with the radius of 0.95 was used as the initial guess for contour. 
Here, the initial guess of was set to 0.5. When , the solution 
for       was sequentially calculated to set the 
initial guess value.

The number of segments used for the analysis was set identical to 
that in the study by Choi (2020), or   .

The core shape of several  values is illustrated in Fig. 4. An 
interpolated value based on the Fourier analysis was used for the shape 
between nodal points. Specifically, half of the results of this study and 
those of the study by Choi (2020) were illustrated considering 
symmetry. The core shape was almost identical to the result in the 
study by Choi (2020), in which the CD method for a stream function 
was used. Thus, using the CD method for the fluid velocity is also 
appropriate for analyzing the vortex ring in a steady state. 
Furthermore, the excellence of the CD method based on the direct 
method is exhibited when compared to the results of the study by 
Norbury (1973) (Choi, 2020).

Shariff et al. (1989) and Shariff et al. (2008) conducted a dynamic 
analysis by applying the shape results of Norbury (1973) as the initial 
condition when   to verify the convergence of the dynamic 
analysis results based on the number of segments. Regarding the 
analysis results based on 200, 400, 800, and 1,200 segments, the shape 
of a steady state was maintained even after time had passed when the 
number of segments was 1,200. Conversely, in this study, an analytical 
method was proposed to determine the shape of the N-F family vortex 
ring via iterative methods based on the initially estimated shape, and 
the results were superior to those reported by Norbury (1973).
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Fig. 4 Contour shapes for various values of 

If only computation convenience is considered, the method 
proposed by Choi (2020), which uses a stream function to directly 
express shapes, is superior than the method proposed in present study, 
which estimates shapes based on two velocity components and shape 
slope. However, the CD method for fluid velocity should be 
introduced to expand the proposed method for an unsteady fluid 
analysis. 

Fig. 5 illustrates the analysis results for forward speed ,  in Eq. 
(35), and the core volume  . Furthermore, constant  was 
determined at each nodal point by applying the deduced contour to the 
method proposed by Choi (2020). The constant value must be identical 
in principle, but a small numerical error is observed at each nodal 
point. In this study, an arithmetic mean of   of each nodal point is 
used. The results of this study correspond to those of the studies by 
Choi (2020) and Norbury (1973), in which stream functions were used.

The analysis results of circulation, vortical impulse, and kinetic 

Fig. 5 Translation velocity (), , and core volume ()

Fig. 6 Circulation (), vortical impulse (), and kinetic energy ()

energy are illustrated in Fig. 6. Given that Norbury (1973) and Choi 
(2020) only used stream functions when calculating kinetic energy, a 
two-dimensional integral in Eq. (34) should be performed. However, 
the number of computations can be drastically reduced because kinetic 
energy is calculated using the line integral of Eq. (36) based on the 
fluid velocity. The kinetic energy result obtained in this study 
corresponds to the result obtained by Choi (2020), but the values are 
slightly greater than the result reported by Norbury (1973).

5. Conclusion

In this study, we examined whether the CD method for fluid 
velocity, which is used for dynamic analysis, can also be applied for 
the analysis of a vortex ring in a steady state. When compared to 
conventional analysis results based on the Stokes’ stream function, the 
CD method for fluid velocity is applicable for analyzing the N-F 
family of vortex rings.

The speed of the vortical center and impulse center corresponds to 
the forward speed of a vortex ring, and the solution can be obtained by 
additionally applying a conditional equation, which sets the two 
speeds as identical. A normal vector can be obtained at the discretized 
nodal point of a shape via Fourier analysis. The normal vector was 
eventually used to determine the converged iterative calculation 
results. The degree of numerical integration was heightened by 
analytically performing the integral of logarithmic singularity. 

In future studies, the stability of the N-F family of vortex rings due 
to a small disturbance can be examined based on the proposed method.
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Appendix

The integral values at the logarithmic-singular segment based on the asymptotic expansion of Eq. (51) are expressed as follows.
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