• 제목/요약/키워드: Stock Information

검색결과 1,243건 처리시간 0.123초

Predicting Stock Prices Based on Online News Content and Technical Indicators by Combinatorial Analysis Using CNN and LSTM with Self-attention

  • Sang Hyung Jung;Gyo Jung Gu;Dongsung Kim;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • 제30권4호
    • /
    • pp.719-740
    • /
    • 2020
  • The stock market changes continuously as new information emerges, affecting the judgments of investors. Online news articles are valued as a traditional window to inform investors about various information that affects the stock market. This paper proposed new ways to utilize online news articles with technical indicators. The suggested hybrid model consists of three models. First, a self-attention-based convolutional neural network (CNN) model, considered to be better in interpreting the semantics of long texts, uses news content as inputs. Second, a self-attention-based, bi-long short-term memory (bi-LSTM) neural network model for short texts utilizes news titles as inputs. Third, a bi-LSTM model, considered to be better in analyzing context information and time-series models, uses 19 technical indicators as inputs. We used news articles from the previous day and technical indicators from the past seven days to predict the share price of the next day. An experiment was performed with Korean stock market data and news articles from 33 top companies over three years. Through this experiment, our proposed model showed better performance than previous approaches, which have mainly focused on news titles. This paper demonstrated that news titles and content should be treated in different ways for superior stock price prediction.

경영자 보유 스톡옵션 가치가 기업의 배당정책에 미치는 영향 (The effects of managers' stock-option value on corporate payout polish)

  • 신성욱
    • 경영과정보연구
    • /
    • 제30권3호
    • /
    • pp.217-239
    • /
    • 2011
  • 본 연구는 국내 상장 제조기업을 대상으로 경영자가 보유하고 있는 스톡옵션 가치에 따라 배당정책이 어떻게 달라지는지를 분석하는데 있다. 구체적으로 본 연구에서는 기존의 선행연구와 달리 경영자에게 지급된 스톡옵션 보상의 크기를 블랙-숄즈 모형을 통해 그 가치를 측정하고 이들이 기업의 배당정책에 어떤 영향을 미치는지를 규명하고자 하였다. 2006년부터 2008년까지 184개 상장기업 자료를 바탕으로 이상에서 제시한 연구목적을 실증분석한 결과를 요약하면 다음과 같다. 첫째, 경영자 보유 스톡옵션 블랙-숄즈 가치와 자사주매입 비중 사이에 양(+)의 관련성이 있는 것으로 나타났다. 이는 경영자 보유 스톡옵션의 가치가 클수록 현금배당 보다는 자사주 매입 의사결정을 보다 선호한다는데 대한 실증적 증거라 할 수 있다. 둘째, 주식가격 1% 증감에 따른 경영자 스톡옵션 블랙-숄즈 가치 변화(델타)를 블랙-숄즈 모형을 주식가격으로 편미분 하여 측정하고, 그 크기가 기업의 배당정책에 어떠한 영향을 미치는지를 분석한 결과, 앞의 결과와 동일하게 자사주매입 비중과 통계적으로 유의한 양(+)의 관련성을 발견할 수 있었다. 이상의 연구결과는 경영자에게 부여된 스톡옵션 보상이 기업 전체의 대리 비용을 줄이고, 주주와 경영자 간의 이해관계를 일치시킬 수 있는 효율적 관리통제 도구로 활용될 수 있지만, 역으로 경영자가 스톡옵션 보상 크기를 극대화 시키기 위해 자신에게 유리한 배당정책을 추구할 수도 있음을 간접적으로 시사하는 결과라 할 수있다.

  • PDF

주가 운동양태 예측을 위한 예측 모델결정에 관한 연구 (A Study on Determining the Prediction Models for Predicting Stock Price Movement)

  • 전진호;조영희;이계성
    • 한국콘텐츠학회논문지
    • /
    • 제6권6호
    • /
    • pp.26-32
    • /
    • 2006
  • 주식투자의 대중화, 관심의 증가에 따라 주가예측의 중요성이 증대되고 있다. 주가의 변화는 어떤 경향이나 패턴에 의해 움직인다고 가정할 때, 과거의 주가분석을 통해 이들의 변화를 잘 설명할 수 있는 모델의 구성이 가능할 것이다. 동적인 현상을 반영하는 최적의 모델이 구성된다면 이를 통해 향후의 일정기간의 주가의 운동양태의 예측이 가능할 것이다. 본 연구에서는 주가와 같은 템포랄(temporal) 데이터를 잘 설명할 수 있는 모델결정에 대한 방법론으로서 오토마타 기반의 모델을 가정한다. 모델의 최적 상태 수를 결정하기 위한 기준으로서 베이지안정보기준(BIC : Bayesian Information Criterion) 근사법을 사용한다. 베이지안정보기준의 유효성을 살펴보고 베이지안정보기준을 실제 주가데이터 모델의 상태 수 결정과정에 적용하여 모델을 생성한 후 결정된 모델을 통하여 일정 기간의 일별주가곡선의 운동양태를 예측한다. 실제의 주가곡선에 적용하여 모델의 유효성을 확인하였고 예측 주가곡선의 운동양태가 실제 주가 곡선과 유사함을 확인하였다.

  • PDF

Two-Stage forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.427-436
    • /
    • 2000
  • The prediction of stock price index is a very difficult problem because of the complexity of the stock market data it data. It has been studied by a number of researchers since they strong1y affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain Intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network (BPN). Fina1ly, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Stock Selection Model in the Formation of an Optimal and Adaptable Portfolio in the Indonesian Capital Market

  • SETIADI, Hendri;ACHSANI, Noer Azam;MANURUNG, Adler Haymans;IRAWAN, Tony
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권9호
    • /
    • pp.351-360
    • /
    • 2022
  • This study aims to determine the factors that can influence investors in selecting stocks in the Indonesian capital market to establish an optimal portfolio, and find phenomena that occurred during the COVID-19 pandemic so that buying interest / the number of investors increased in the Indonesian capital market. This study collection technique uses primary data obtained from the survey questionnaire and secondary data which is market data, stock price movement data sourced from the Indonesia Stock Exchange, Indonesian Central Securities Depository, and Bank Indonesia, as well as empirical literature on behavior finance, investment decision, and interest in buying stock. The method used in this research is the survey questionnaire analysis with the SEM (statistical approach). The results of the analysis using SEM show that investor behavior influences the stock-buying interest, investor behavior, and the stock-buying interest influences investor decision-making. However, risk management does not influence investor-decision making. This occurs when the investigator's psychological capacity produces more decision information by decreasing all potential biases, allowing the best stock selection model to be selected. When the investigator's psychological capacity creates more decision information by reducing biases, the optimum stock selection model can be chosen.

물류업 안전재고 감축을 위한 정보시스템 설계 (Design of Information Application of Decreasing Safety Stock in the Logistics)

  • 김민준;박인술;윤준섭;홍상태
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2005년도 추계학술대회
    • /
    • pp.194-198
    • /
    • 2005
  • Inventory information system is providing the benefits of smoother demand, lower inventories(work in process, safety stock) and reduced costs. This study focused on improvement of safety level inventory efficiency by inventory information system. The results indicated that inventory information system allowed the company to serve its customers more surely and efficiently.

  • PDF

The First Passage Time of Stock Price under Stochastic Volatility

  • Nguyen, Andrew Loc
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.879-889
    • /
    • 2004
  • This paper gives an approximation to the distribution function of the .rst passage time of stock price when volatility of stock price is modeled by a function of Ornstein-Uhlenbeck process. It also shows how to obtain the error of the approximation.

  • PDF

Prediction of Stock Returns from News Article's Recommended Stocks Using XGBoost and LightGBM Models

  • Yoo-jin Hwang;Seung-yeon Son;Zoon-ky Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.51-59
    • /
    • 2024
  • 투자자는 수익의 극대화를 위해 언론사의 기사를 포함한 다양한 정보를 활용하여 투자 전략을 수립한다. 이에 국내 언론사에서도 신뢰도 있는 투자정보를 제공하기 위해, 애널리스트의 종목분석 보고서에 기초한 종목 추천기사를 게재하고 있다. 본 연구에서는 종목 추천기사 게재를 하나의 사건(event)으로 간주하고, XGBoost와 LightGBM 모델을 활용하여 기사 게재 10일 이후 가격의 상승 또는 하락을 예측하는 분류 모델을 제시한다. 또한, 전체 추천종목을 유가증권시장과 코스닥 시장 및 기업규모(대형/소형)에 따라 4가지로 분류하고, 하위 그룹에 따라 모델의 예측 정확도에 차이가 있는지 파악하고자 한다. 학습 결과 전체 모델의 분류 정확도는 XGBoost 75%, LightGBM 71%로 나타났고, 예측 정확도는 유가증권 시장 예측력이 코스닥시장 주식 대비 높게 나타났으며, 대형주의 예측력이 소형주 보다 높게 나타났다. 마지막으로, SHAP(Shapley Additive exPlanations) 분석을 통해 개별 모델의 예측에 중요한 변수를 살펴보고 모델의 해석력을 제고하였다.

A Smoothing Method for Stock Price Prediction with Hidden Markov Models

  • Lee, Soon-Ho;Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.945-953
    • /
    • 2007
  • In this paper, we propose a smoothing and thus noise-reducing method of data sequences for stock price prediction with hidden Markov models, HMMs. The suggested method just uses simple moving average. A proper average size is obtained from forecasting experiments with stock prices of bank sector of Korean Exchange. Forecasting method with HMM and moving average smoothing is compared with a conventional method.

  • PDF

Empirical Analysis on Profit and Stability of Korean Reverse Convertible Funds

  • Shin, Yang-Gyu
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1073-1080
    • /
    • 2008
  • Reverse convertible fund is a method of investment assuring both profit and stability in an unstable stock market, and shares characteristics of a hedge fund and derivative securities. This study analyzes empirically whether reverse convertible funds can indeed serve as a new method in variable stock market environment to provide high profit with low risks especially in the Korean stock market.

  • PDF