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Abstract

This paper gives an approximation to the distribution function of the .rst 
passage time of stock price when volatility of stock price is modeled by a function 
of Ornstein-Uhlenbeck process. It also shows how to obtain the error of the 
approximation.
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1. Introduction

Traditionally, we assume that a stock price process Xt  satisfies

dX t= μ( t,Xt)dt+ σ( t,Xt)dB t.

For example, Black and Scholes assumed that μ( t,x) =  μx  and 

σ( t,x) =  σx  with σ , the volatility, is a constant. However, empirical data show 

that the constant volatility assumption is generally not true. Therefore, as 

suggested by Fouque-Papanicolaou-Siscar [4], we now try to refine Black and 

Scholes model by modeling the volatility σ  as a stochastic process driven by 

some other process. In other words, we assume σ  = σ t  = f(Yt)   where Yt  is 

some stochastic process that drives σ  and f  is some positive continuous function. 

From modeling point of view and from tractability, Ornstein-Uhlenbeck is one of 

the good candidates for Y . So let Y  be a mean-reverting Ornstein-Uhlenbeck 

process satisfying
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dY t =  α(m - Y t)dt+ β 2αdB t  ,  Y 0 =  y  ,

where m  is the long run mean level of Y  and α  is the rate of mean reverting. 

There is a minor problem with this choice for Y . The model implies that the 

stock price X  and the volatility are perfectly correlated, and this is not true in 

general.

Instead, volatility is modeled to have an independent random component of its 

own. Thus we will assume Y  is an Ornstein-Uhlenbeck process satisfying

dY t =  α(m-Yt)dt+β 2αd Ẑ t  ,  Y 0 =  y  ,

where Ẑ  is another Brownian motion typically correlated with the Brownian 

motion Bt  driving the stock price. The instantaneous correlation coefficient 

defined by

d <  B ,  Ẑ >  t =  ρdt  ,

for some ρ∈ [-1,1]  It is also convenient to write

Ẑ t =  ρB t + 1-ρ
2
Z t  , 

where Z  is a standard Brownian motion independent of B . Z  can be thought 

of the source of additional randomness in the volatility fluctuations [5]. As 

a result, we now look at a stock price process Xt  satisfying

dX t =  μXtdt + f(Yt)XtdB t   with

dY t =  α(m-Y t )dt + β 2α(ρdB t + 1-ρ2dZ t)

Before we go on, let us state a few well-known facts about the process Y .

Proposition 1.1 :  Suppose that Y  satisfies

dY t =  α(m-Yt)dt + β 2αd B̃ t,   Y 0 =  y

Then :

a. Y t =  m+ e
-α t(y-m)+β 2α⌠⌡

t

0
e -α( t- s)d B̃ s .  
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b. So that Yt ∼ N(m+ e
-α t(y-m), β 2(1-e -2 αt )) .  

c. The process Y  is stationary, ergodic. In fact, with the appropriate 

sampling distribution for Y 0 , Cov(Y t,Ys) = ρ( t,s) =  β
2
e
-α |t- s|.

d. The invariant distribution of Yt  (obtained by letting t → ∞) is 

N(m,β
2
) .

e. Yt ∼ Ỹ αt
 where Ỹ  satisfies dỸ t =  (m- Ỹ t)dt+β 2dB̃ t  , 

Ỹ 0 =  y  

Proof :

The proof of this proposition can be found in many standard text books. (See 

[1], [2],...). In particular, part (e) is a straight forward application of the time 

change theorem.

2. Partial Solution to The Problem

For any stochastic process X , let T
X
b
 be the first passage time of X  to a 

level b , i.e., T
X
b  =  inf {t >  0  : Xt ≥ b } .

We are going to approximate the distribution of TXb  for the above problem. We 

first need a result that is similar to the egordic theorem.

Lemma 2.1 :  Suppose Ỹ  is an Ornstein-Uhlenbeck process satisfying

dỸ t =  (m- Ỹ t)dt+β 2dB̃ t  ,   Y 0̃ =  y  

Then, for any bounded function g

lim
α→∞

⌠
⌡

t

0
g( Ỹ αs)ds= tE ∞[g( Ỹ) ] = tE ∞[g(Y)]

where E∞[․] denotes the expectation with respect to the invariant distribution.

Proof :

From the ergodic property of Ỹ  ; we have

lim
α→∞

⌠
⌡

t

0
g( Ỹ αs)ds= lim

α→∞
t
1
αt
⌠
⌡

αt

0
g(Y τ̃)dτ = tE∞[g( Ỹ) ].
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Also, since the invariant distribution of Y  is the same as that of Ỹ  ; the 

second equality in the lemma holds.

From now on, we will denote E∞[․]  as < ․ >. The spirit of this lemma is 

that: Since the distribution of Ỹ αt
 (or Yt) depends only on the product αt , 

allowing t  to become large is the same in distribution as allowing the rate of 

mean reversion α  to become large. [2]

It is not too hard to show that Xt= X 0exp {-
1
2
⌠
⌡

t

0
f
2
(Ys )ds+

⌠
⌡

t

0
f(Ys)dBs}g 

solves the above stochastic differential equation dX t= μXtdt+ f(Yt)XtdB t  . 

As a result, we want to approximate P[TXb ≤a]  where

TXb = inf {t : Xt≥ b }

= inf {t : X 0exp {μt-
1
2
⌠
⌡

t

0
f
2
(Ys )ds+

⌠
⌡

t

0
f(Ys)dB s}≥b } .

 

For simplicity, we first look at the case where 

Xt= μt-
1
2
⌠
⌡

t

0
f 2(Ys )ds+

⌠
⌡

t

0
f(Ys)dBs  .

Theorem 2.1 :  Suppose Xt= μt-
1
2
⌠
⌡

t

0
f 2(Ys )ds+

⌠
⌡

t

0
f(Ys)dBs  where Y  is a 

stationary, ergodic process satisfying dY t= α(m-Yt)dt+β 2αdB t̃, Y 0 = y . 

Then, for large α ,

P[T
X
b≤a]≈ P[

sup
0≤t≤α

(μ t-
1
2
< f
2
> t+W < f 2> t)≥b]

=⌠⌡

α

0

b'

2πx 3
e
1
2x
( b'-μ'x )

2

dx

where b'=
b

< f 2>
 and μ'=

μ-
1
2
< f 2>

< f
2
>

. 

Proof :

Since Xt= μt-
1
2
⌠
⌡

t

0
f 2(Ys )ds+

⌠
⌡

t

0
f(Ys)dBs  ,
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P[TXb≤a] =  P[
sup
0≤t≤a

X t≥b]

=  P[
sup
0≤t≤a

μt-
1
2
⌠
⌡

t

0
f
2
(Ys )ds+

⌠
⌡

t

0
f(Ys)dB s)≥b]

From part (e) of proposition 1.1,

              = P[
sup
0≤t≤a

(μ t-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+

⌠
⌡

t

0
f( Ỹ αs)dBs)≥b]

Applying the time change theorem,

              = P[
sup
0≤t≤a

(μ t-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+W ⌠

⌡

t

0
f(Ỹ αs)ds

)≥b]

Motivated by lemma 2.1, for large α

             

≈ P[
sup
0≤t≤a

(μ t-
1
2
t < f 2>+W t < f

2
>)≥b]

=  P[
sup
0≤t≤a

{(
μ-

1
2
< f 2 >

< f
2
>

)t+Wt}≥
b

< f
2
>
]

=  P[
sup
0≤t≤a

(μ' t+Wt)≥b']

where μ'=
μ-

1
2
< f 2 >

< f
2
>

 and b'=
b

< f 2>
. Applying theorem A.1 in the 

appendix, we obtain

P[TXb≤a] ≈ P[T
W
L≤a]

=  ⌠⌡

a

0

|b'|

2πy
3
e
-
1
2y
(b'-μ'y) 2

dy

where T
W
L =  inf {s :Ws≤L }  with L  is some line of the form μt+ b .

The next theorem shows how we can control the error in the above 

approximation.

Theorem 2.2 : Let E  denotes the error in the above approximation, i.e., 

E= |I( t)- J( t)|, where
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I( t) =  P[
sup
0≤t≤a

(μ t-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+W ⌠

⌡

t

0
f(Ỹ αs)ds

)≥b]

and

J( t) =  P[
sup
0≤t≤a

(μ t-
1
2
< f 2> t+W < f 2> t)≥b] .

Then for any given ε , δ  > 0, there exists α 0 , large enough, such that

E ≤P[
sup
0≤t≤a

(-
1
2
(< f 2 > t+εt)+W < f

2
> t+ε t≥b-μa]

- P[
sup
0≤t≤a

(-
1
2
(< f 2 > t-εt)+W < f 2> t-ε t≥b]+δ

whenever α≥α 0 , and μ≥0 .

We shall prove this theorem through a couple of propositions.

Proposition 2.1 :  Assume μ≥0 . Then for any ε≥0 , 

P[
sup
0≤t≤a

(-
1
2
(< f 2 > t-εt)+W < f

2
> t-ε t≥b]

  ≤P[
sup
0≤t≤a

(μt-
1
2
< f 2> t+W < f 2> t)≥b]

  ≤P[
sup
0≤t≤a

(-
1
2
(< f

2
> t+εt)+W < f 2> t+ε t≥b-μa]

Proof:

First of all, since μ≥0 ,

P[
sup
0≤t≤a

(μt-
1
2
< f
2
> t+W < f 2> t≥b]

  ≥ P[
sup
0≤t≤a

(-
1
2
< f 2> t+W < f

2
> t)≥b]

  = P[
sup

0≤t≤a < f 2 >
(-

1
2
t+W t)≥b]

  ≥ P[
sup

0≤t≤(< f
2
>-ε)a

(
1
2
t+W t≥b]

  = P[
sup
0≤t≤a

(-
1
2
(< f

2
> t-ε t)+W < f 2> t-ε t≥b]

This is the first inequality. In addition,
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P[
sup
0≤t≤a

(μt-
1
2
< f 2> t+W < f 2> t)≥b]

  ≤P[
sup
0≤t≤a

(-
1
2
< f
2
> t+W < f 2> t)≥b-μa]

  = P[
sup

0≤t≤a < f
2
>
(-

1
2
t+W t)≥b-μa]

  ≤P[
sup

0≤t≤(< f 2 >+ε)a
(-

1
2
t+W t)≥b-μa]

  = P[
sup
0≤t≤a

(-
1
2
(< f 2 > t+εt)+W < f 2> t+εt≥b-μa]

as required.

Proposition 2.2 :  For any given ε > 0 , δ > 0  there exists an α 0  such that

P[
sup
0≤t≤a

(-
1
2
(< f 2 > t-ε t)+W < f 2> t-ε t≥b]-δ

  ≤ P[
sup
0≤t≤a

(μt-
1
2
⌠
⌡

t

0
f
2
( Ỹ αs)ds+W ⌠

⌡

t

0
f
2
( Y αs̃)ds

)≥b]

  ≤ P[
sup
0≤t≤a

(-
1
2
(< f 2 > t+ε t)+W < f 2> t+ε t≥b-μa]+δ

provided that α≥α 0 , and μ≥0 .

Proof:

Since lim
α→∞

⌠
⌡

t

0
f
2
( Ỹ αs)ds= t < f

2
>  a.s, lim

α→∞

⌠
⌡

t

0
f
2
( Ỹ αs)ds= t< f

2
>  in probability. 

Therefore, given ε > 0  and δ > 0 , there exists α 0  such that whenever α≥α 0 ,

P[|⌠⌡
t

0
f 2( Ỹ αs)ds- < f

2> t|≥εt]≤δ  .

Let A = [ |⌠⌡
t

0
f 2( Ỹ αs)ds- < f

2> t|≥εt] . Then partitioning by A , we have

P[
sup
0≤t≤a

(μt-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+W ⌠

⌡

t

0
f 2 ( Ỹ αs)ds

)≥b]

  =P( [
sup
0≤t≤a

(μt-
1
2
⌠
⌡

t

0
f
2
( Ỹ αs)ds+W ⌠

⌡

t

0
f
2
( Ỹ αs)ds

)≥b]∩A)

    +P( [
sup
0≤t≤a

(μt-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+W ⌠

⌡

t

0
f 2 ( Ỹ αs)ds

)≥b]∩A) .
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Therefore,

P[
sup
0≤t≤a

(μt-
1
2
⌠
⌡

t

0
f
2
( Ỹ αs)ds+W ⌠

⌡

t

0
f
2
( Ỹ αs)ds

)≥b]

  ≤δ+P( [
sup
0≤t≤a

(μt-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+W ⌠

⌡

t

0
f 2 ( Ỹ αs)ds

)≥b]∩A)

  ≤δ+P( [
sup
0≤t≤a

(-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+W ⌠

⌡

t

0
f 2 ( Ỹ αs)ds

)≥b-μa]∩A)

  = δ+P( [
sup

0≤t≤⌠⌡

a

0
f
2
( Ỹ αs)ds

(-
1
2
t+Wt)≥b-μa]∩A)

  ≤δ+P( [
sup

0≤t≤(< f 2 >+ε)a
(-

1
2
t+Wt)≥b-μa]∩A)

  ≤P[
sup
0≤t≤a

(-
1
2
(< f 2 > t+εt)+W < f

2
> t+εt≥b-μa]+δ.

This is the second inequality. For the first inequality,

P[
sup
0≤t≤a

(μt-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+W ⌠

⌡

t

0
f 2 ( Ỹ αs)ds

)≥b]

  ≥P[
sup
0≤t≤a

(-
1
2
⌠
⌡

t

0
f
2
( Ỹ αs)ds+W ⌠

⌡

t

0
f
2
( Ỹ αs)ds

)≥b]

  ≥P( [
sup
0≤t≤a

(-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+W ⌠

⌡

t

0
f 2 ( Ỹ αs)ds

)≥b]∩A)

         

  = P( [
sup

0≤t≤⌠⌡

a

0
f 2( Ỹ αs)ds

(-
1
2
t+W t≥b]∩A)

  ≥P( [
sup

0≤t≤(< f
2
>-ε)t

(-
1
2
t+Wt)≥b]∩A)

  = P( [
sup

0≤t≤(< f 2 >-ε)t
(-

1
2
t+W t)≥b]

    -P( [
sup

0≤t≤(< f 2 >-ε)t
(-

1
2
t+W t)≥b]∩A)

  ≥P[
sup
0≤t≤a

(-
1
2
(< f 2 > t-εt)+W < f

2
> t-εt≥b]-δ.

This completes the proof of proposition 2.2.

Proof of theorem 2.2:

This is done by combining the above two propositions together.

An immediate advantage of this theorem is that both probabilities 
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P[
sup
0≤t≤a

(-
1
2
(< f 2 > t+ε t)+W < f 2> t+ε t≥b-μa]

and

P[
sup
0≤t≤a

(-
1
2
(< f 2 > t-ε t)+W < f

2
> t-ε t≥b]

computed using formula A.1 in the appendix.

We are now ready to state the general result.

Corollary 2.1 :  Suppose Xt= X 0e
μt-

1
2
⌠
⌡

t

0
f
2
(Ys )ds+

⌠
⌡

t

0
f(Ys)dB s

with X 0 > 0  and Y  

is the same process in theorem 2.1. Then for large α ,

P[TXb≤a] ≈P[
sup
0≤t≤a

(μt-
1
2
< f 2> t+W < f 2> t)≥ ln (

b
X 0
)]

=⌠⌡

a

0

b'

2πx 3
e
-
1
2x
(b'-μ'x)

2

dx

where b' =  

ln (
b
X 0
)

< f 2>
 and μ'=

μ-
1
2
< f 2>

< f
2
>

.

Also, for any given ε > 0 , δ > 0 , there exists an α 0  such that the error, E ,  for 

this case satisfies

|E| ≤P[
sup
0≤t≤a

(-
1
2
(< f 2 > t+ε t)+W < f 2> t+εt≥ b̃-μa]

-P[
sup
0≤t≤a

(-
1
2
(< f

2
> t-ε t)+W < f 2> t- εt≥ b ]̃+δ

whenever α≥α 0 , and μ≥0 .

Proof :

P[TXb≤a] =P[
sup
0≤t≤a

X t≥b]

=P[
sup
0≤t≤a

X 0e
μt-

1
2
⌠
⌡

t

0
f 2 (Ys )ds+

⌠
⌡

t

0
f(Ys)dB s

≥b]

=P[
sup
0≤t≤a

e
μt-

1
2
⌠
⌡

t

0
f
2
(Ys )ds+

⌠
⌡

t

0
f(Ys)dB s

≥
b
X 0
]

=P[
sup
0≤t≤a

( μt-
1
2
⌠
⌡

t

0
f 2(Ys )ds+

⌠
⌡

t

0
f(Ys)dB s )≥ ln (

b
X 0
)]
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               =P[
sup
0≤t≤a

( μt-
1
2
⌠
⌡

t

0
f 2( Ỹ αs)ds+

⌠
⌡

t

0
f( Ỹ αs)dBs )≥ ln (

b
X 0
)]

≈P[
sup
0≤t≤a

(μt-
1
2
< f 2> t+W < f

2
> t)≥ b̃]

for large α . The error can be handled similarly as before.

Appendix

Suppose {Bt,Ft ; 0≤t<∞}  is a standard one dimensional Brownian Motion on 

(Ω,F,F t,P) . Let

T
B
b (ω)= inf {t≥0:Bt(ω)≥b }

be the .rst passage time of B  to a level b > 0 , and

T
B
L(ω)= inf {t≥0:Bt(ω)≥μt+b }

be the .rst passage time to linear barrier. The distributions of TBb  and T
B
L
 are 

given the following theorem whose proof can be found in [2].

Theorem A.1 :  Let {Bt,Ft; 0≤t<∞}  be a standard, one dimensional 

Brownian motion on (⊗,F,P). Let TBb , T
B
L
 be de.ned as above. Then

i. The density of TBb  is

P[TBb ∈ dt] =
|b|

2πt 3
e
-
b
2

2t dt.

ii. And the density of TBL  is given as

P[T
B
L ∈ dt] =

|b|

2πt 3
e
-
1
2t
(b+μt)

2

dt.
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