• Title/Summary/Keyword: Stochastic prediction

Search Result 217, Processing Time 0.022 seconds

Prediction of Ozone Formation Based on Neural Network and Stochastic Method (인공신경망 및 통계적 방법을 이용한 오존 형성의 예측)

  • Oh, Sea Cheon;Yeo, Yeong-Koo
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • The prediction of ozone formation was studied using the neural network and the stochastic method. Parameter estimation method and artificial neural network(ANN) method were employed in the stochastic scheme. In the parameter estimation method, extended least squares(ELS) method and recursive maximum likelihood(RML) were used to achieve the real time parameter estimation. Autoregressive moving average model with external input(ARMAX) was used as the ozone formation model for the parameter estimation method. ANN with 3 layers was also tested to predict the ozone formation. To demonstrate the performance of the ozone formation prediction schemes used in this work, the prediction results of ozone formation were compared with the real data. From the comparison it was found that the prediction schemes based on the parameter estimation method and ANN method show an acceptable accuracy with limited prediction horizon.

  • PDF

Service Life Prediction for Building Materials and Components with Stochastic Deterioration (추계적 열화모형에 의한 건설자재의 사용수명 예측)

  • Kwon, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • The performance of a building material degrades as time goes by and the failure of the material is often defined as the point at which the performance of the material reaches a pre-specified degraded level. Based on a stochastic deterioration model, a performance based service life prediction method for building materials and components is developed. As a stochastic degradation model, a gamma process is considered and lifetime distribution and service life of a material are predicted using the degradation model. A numerical example is provided to illustrate the use of the proposed service life prediction method.

Estimation of Path Attenuation Effect from Ground Motion in the Korean Peninsula using Stochastic Point-source Model (추계학적 점지진원 모델을 사용한 한반도 지반 운동의 경로 감쇠 효과 평가)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.9-17
    • /
    • 2020
  • The stochastic point-source model has been widely used in generating artificial ground motions, which can be used to develop a ground motion prediction equation and to evaluate the seismic risk of structures. This model mainly consists of three different functions representing source, path, and site effects. The path effect is used to emulate decay in ground motion in accordance with distance from the source. In the stochastic point-source model, the path attenuation effect is taken into account by using the geometrical attenuation effect and the inelastic attenuation effect. The aim of this study is to develop accurate equations of ground motion attenuation in the Korean peninsula. In this study, attenuation was estimated and validated by using a stochastic point source model and observed ground motion recordings for the Korean peninsula.

Enhanced Markov-Difference Based Power Consumption Prediction for Smart Grids

  • Le, Yiwen;He, Jinghan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1053-1063
    • /
    • 2017
  • Power prediction is critical to improve power efficiency in Smart Grids. Markov chain provides a useful tool for power prediction. With careful investigation of practical power datasets, we find an interesting phenomenon that the stochastic property of practical power datasets does not follow the Markov features. This mismatch affects the prediction accuracy if directly using Markov prediction methods. In this paper, we innovatively propose a spatial transform based data processing to alleviate this inconsistency. Furthermore, we propose an enhanced power prediction method, named by Spatial Mapping Markov-Difference (SMMD), to guarantee the prediction accuracy. In particular, SMMD adopts a second prediction adjustment based on the differential data to reduce the stochastic error. Experimental results validate that the proposed SMMD achieves an improvement in terms of the prediction accuracy with respect to state-of-the-art solutions.

Electricity Price Prediction Model Based on Simultaneous Perturbation Stochastic Approximation

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • The paper presents an intelligent time series model to predict uncertain electricity market price in the deregulated industry environment. Since the price of electricity in a deregulated market is very volatile, it is difficult to estimate an accurate market price using historically observed data. The parameter of an intelligent time series model is obtained based on the simultaneous perturbation stochastic approximation (SPSA). The SPSA is flexible to use in high dimensional systems. Since prediction models have their modeling error, an error compensator is developed as compensation. The SPSA based intelligent model is applied to predict the electricity market price in the Pennsylvania-New Jersey-Maryland (PJM) electricity market.

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.

Stochastic Prediction of Strong Ground Motions in Southern Korea (추계학적 보사법을 이용한 한반도 남부에서의 강지진동 연구)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • In order to estimate peak ground motions and frequency characteristics of strong ground motions in southern korea, we employed the stochastic simulation method with the moment magnitude(M$_{w}$) and the hypocentral distance(R). We estimated same input parameters that account for specific properties of source and propagation processes, and applied them to the stochastic simulation method. The stress drop($\Delta$$\sigma$) of 100-bar was estimated considering results of research in ENA, China, and southern korea. The attenuation parameter x was calculated by analyzing 57 seismograms recorded from September 1996 to October 1997 and the estimation result of the attenuation parameter x is 0.00112+0.000224 R where R is hypocenter distance. We estimated strong ground motion relations using the stochastic simulation method with suitable input parameters(e.g. $\Delta$$\sigma$, x, and so on). At last, we derived relations between hypocentral distances and ground motions(seismic attenuation equation) using results of the stochastic prediction.esults of the stochastic prediction.n.

  • PDF

Development of Dam Inflow Simulation Method Based on Bayesian Autoregressive Exogenous Stochastic Volatility (ARXSV) model

  • Fabian, Pamela Sofia;Kim, Ho-Jun;Kim, Ki-Chul;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.437-437
    • /
    • 2022
  • The prediction of dam inflow rate is crucial for the management of the largest multi-purpose dam in South Korea, the Soyang Dam. The main issue associated with the management of water resources is the stochastic nature of the reservoir inflow leading to an increase in uncertainty associated with the inflow prediction. The Autoregressive (AR) model is commonly used to provide the simulation and forecast of hydrometeorological data. However, because its estimation is based solely on the time-series data, it has the disadvantage of being unable to account for external variables such as climate information. This study proposes the use of the Autoregressive Exogenous Stochastic Volatility (ARXSV) model within a Bayesian modeling framework for increased predictability of the monthly dam inflow by addressing the exogenous and stochastic factors. This study analyzes 45 years of hydrological input data of the Soyang Dam from the year 1974 to 2019. The result of this study will be beneficial to strengthen the potential use of data-driven models for accurate inflow predictions and better reservoir management.

  • PDF

A Dynamic-Stochastic Model for Air Pollutant Concentration (大氣汚染濃度에 관한 動的確率모델)

  • 김해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.156-168
    • /
    • 1991
  • The purpose of this paper is to develop a stochastic model for daily sulphur dioxide $(SO_2)$ concentrations prediction in urban area (Seoul). For this, the influence of the meteorological parameters on the $SO_2$ concentrations is investigated by a statistical analysis of the 24-hr averaged $SO_2$ levels of Seoul area during 1989 $\sim$ 1990. The annual fluctuations of the regression trend, periodicity and dependence of the daily concentration are also analyzed. Based on these, a nonlinear regression transfer function model for the prediction of daily $SO_2$ concentrations is derived. A statistical procedure for using the model to predict the concentration level is also proposed.

  • PDF

Time-variant structural fuzzy reliability analysis under stochastic loads applied several times

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.525-534
    • /
    • 2015
  • A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with and without strength degeneration are established using the stress-strength interference theory. The random loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed method is demonstrated numerically through an example. The results have shown that the proposed method is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without degeneration is also a special case of fuzzy reliability with structural strength degeneration.