• Title/Summary/Keyword: Stirring speed

Search Result 148, Processing Time 0.025 seconds

Ultrafiltration and Separation Process Optimization of Hen Egg White Lysozyme as Natural Antimicrobial Enzyme (천연 항균 효소제 난백 lysozyme의 한외여과 조건 최적화)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.397-406
    • /
    • 1998
  • Hen egg white lysozyme (HEWL) is very valuable as a natural preservative in food processing due to its selective bactericidal activity. HEWL which traditionally isolated by crystallization or freeze drying was simply separated from 13 different hen egg white (HEW) proteins by a single-step ultrafiltration. Freeze dried HEW (0.25%, w/v) dissolved in a citrate-phosphate buffer (pH 4.6) was ultrafiltered with a PM30 membrane under various operating conditions, by changing concentration, temperature, transmembrane pressure $({\triangle}P_T)$, and stirring speed. Optimum separation conditions were decided when maximal flux was obtained. Under the optimum separation conditions, the effect of membrane material and fouling on flux as time passed as well as lysozyme concentration, protein concentration, specific activity (SA) in the permeate were measured. Best separation conditions of HEWL with PM30 membrane were sample concentration 0.25%, temperature $35^{\circ}C$, ${\Delta}P_T\;30\;psi$, and stirring speed 300 rpm. During the first 12 min, the flux of YM30 was higher, but at the steady-state it was lower than that of PM30. The SA of the PM30 permeate was over 2 times higher in spite of the lysozyme and protein concentration being lower than that of YM30 permeate. The flux of 5 times used PM30 decreased 30% compared to a new PM30, but both had the same tendency in flux decrease when time passed. Both of them reached a steady-state after 35 min and remained at 70% of the initial flux. In the PM30 permeate, the lysozyme concentration and SA were 110 units/mL and 2,821 units/mg protein, respectively. Therefore, PM30 membrane separation was very effective for separation of antimicrobial lysozyme.

  • PDF

Measurements of $T_1$-and $T_2$-relaxation Time Changes According to the Morphological Characteristics of Gold Nanoparticles (GNPs) (금 나노 입자의 형태적 특성에 따른 $T_1$, $T_2$ 이완 시간의 변화 측정)

  • Jang, M.Y.;Han, Y.H.;Mun, C.W.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.48-56
    • /
    • 2011
  • Purpose : The aim of this study is to measure the typical MR variables such as $T_1$- and $T_2$-relaxation times according to morphological characteristics of gold nanopartides as a preliminary study to perform theragnosis using local heating by gold nanopartides. Materials and Methods : Two types of gold nanoparticles were used. Spheres were synthesized by various methods and stirring speed. Rods were synthesized by adding various concentrations of sphere nanopartides. Gold nanopartides were mixed with 2% agarose gel at 1:1 ratio and then signals were acquired using a 1.5T MRI. For the measurements of $T_1$-and $T_2$-relaxation times, TR and TE were varied, respectively. The results were acquired through $T_1$ and $T_2$ curves based on the intensities of MR image using self-developed software. And Statistical analysis was performed. Results : $T_1$ times were measured 1.86 sec and 2.08 sec for sphere and rod, respectively. On the other hands, $T_2$ times were measured 57 ms and 35.45 ms for sphere and rod. Conclusion : The changes of the MR variables according to the morphological characteristics of the gold nanopartides were confirmed. Optimal MR imaging conditions can be obtained by choosing proper TR and TE according to the type of nanoparticles.

A Study on the Formation of Liquid Crystalline Structure depend on pH Change in O/W Emulsion (O/W형 유화상에서 pH변화에 따른 액정구조의 생성에 관한 연구)

  • Kim, Ji-Seop;Hong, Jin-Ho;Jeon, Mi-Kyeong;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.545-554
    • /
    • 2017
  • This study is concerned with the stability of liquid crystal forming emulsifier with localized depend on change of pH using liquid crystal forming agent of advanced company. The liquid crystal emulsifying agent was localized using Sugar Crystal-LC (bio-tech Co., Ltd., Korea), and comparative samples were measured by using Nikkomulese-LC (Nikko Camicarls, Japan) and Alacel-LC (Croda Camicarls, UK). Liquid crystal formation was confirmed microscopically to show the formation of liquid crystal structure at acidic (pH=4.2), neutral (pH=7.0) and alkaline (pH=11.7). The particles of the liquid crystal were observed with a polarizing microscope according to the stirring speed. The stirring time was all the same for 3 minutes with a homo-mixer, and the stirring speed was increased to 2500 rpm, 3500 rpm and 4500 rpm to observe the liquid crystal state. As a result, it was found that the Korean surfactant was more stable and clear liquid crystal structure was formed than the two foreign acids. In the case of the UK in acid zone, the emulsion particle size was uniform and unstable. In the case of Japanese surfactant, it has similar structure and performance to those of localized Korean. It was found that Korean surfactant had superior emulsifying performance in acid zone compared with foreign products. It is possible to develop various formulations such as liquid crystal cream, lotion, eye cream, etc. using Sugar Crystal-LC emulsifier as an application cosmetic field, and it is expected that it can be widely applied as emulsifying technology for skin care external application in the pharmaceutical industry and the pharmaceutical industry as well as the cosmetics industry.

Electric Resistance Heated Friction Stir Spot Welding of Overlapped Al5052 Alloy Sheets (중첩된 알루미늄 5052 합금판재의 전기저항가열 마찰교반점용접에 관한 연구)

  • Kim, T.H.;Jang, M.S.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.256-263
    • /
    • 2015
  • Electric resistance spot welding has been used to join overlapped steel sheets in automotive bodies. Recently to reduce weight in automotive vehicles, non-ferrous metals are being used or considered in car bodies for hoods, trunk lids, doors parts, etc. Various welding processes such as laser welding, self-piercing rivet, friction stir welding are being used. In the current study, a new electric resistance heated friction stir spot welding is suggested for the spot welding of non-ferrous metals. The welding method can be characterized by three uses of heat -- electric resistance heating, friction stir heating and conduction heating of steel electrodes -- for the fusion joining at the interfacial zone between the two sheets. The welding process has variables such as welding current, diameter of the steel electrodes, revolutions per minute (rpm) of the friction stir pin, and the insert depth of the stir pin. In order to obtain the optimal welding variables, which provide the best welding strength, many experiments were conducted. From the experiments, it was found that the welding strength could be reached to the required production value by using an electrode diameter of 10mm, a current of 7.6kA, a stirring speed of 400rpm, and an insert depth of 0.8mm for the electric resistance heated friction stir spot welding of 5052 aluminum 1.5mm sheets.

Glucose Analysis Using Free and Immobilized Glucose Oxidase Electrode (고정화 효소전극을 이용한 포도당분석)

  • Jang, Ho-Nam;Ju, Dae-Gwon;Kim, Yeong-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.95-100
    • /
    • 1982
  • Glucose oxidase from A. niger was entrapped in polyacrylamide gel which was used in the enzyme electrode for glucose analysis. The electrode was assembled by placing the gel between the membranes on the surface of a Clark type electrode. In order to make it possible to analyze the experimental results later, the stagnation flow was adopted wheree the governing fluid mechanics were well known. The current increased with the increase concentration in the bulk below a certain level of glucose concentration beyond which no more current increase was observed. This is probably due to the diffusion limitation of oxygen from the bulk solution. Also the current increased witll the enzyme loading in the gel, but the linearity between the current and the glucose concentration was rather limited to a narrow range. Flow rate was found to be very important, which means that film diffusion is very important under the flow rate of 5cm/sec. As a conclusion, enzyme loading, gel layer thickness, stirring speed and bulk concentration of glucose were found to be most improtant parameters in yielding a linar current reponse with respect to the bulk glucose concentration.

  • PDF

Preparation and Characterization of Cd-Free Buffer Layer for CIGS by Chemical Bath Deposition (화학습식공정을 이용한 CIGS 태양전지용 Cd-free 버퍼층 박막 제조 및 특성 분석)

  • Hwang, Dae-Kue;Jeon, Dong-Hwan;Sung, Shi-Joon;Kim, Dae-Hwan;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.146-148
    • /
    • 2012
  • In our study, we have focused on optimizing good quality of ZnS buffer layer by chemical bath deposition (CBD) from a bath containing $ZnSO_4$, Thiourea and Ammonia in aqueous solution onto CIGS solar cells. The influence of deposition parameter such as pH, deposition temperature, stirring speed played a very important role on transmission, homogeneity, crystalline of ZnS buffer layer. The transmission spectrum showed a good transmission characteristic above 80% invisible spectral region. CIGS thin flim solar cell with ZnS buffer layer has been realized with the efficiency of 14.2%.

  • PDF

Effect of Solvent on Swelling, Porosity and Morphology of Transparent Poly (HEMA)

  • Pathak Tara Sankar;Kim Lae-Hyun;Chung Kun-Yong
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2006
  • Transparent materials are well known but preparation of transparent poly 2-hydroxyethyl methacrylate {poly (HEMA)} material by varying solvent is a new one and economically reliable. This material is prepared from hydroxyl based monomer HEMA by radical polymerization using benzoyl peroxide (BPO) as initiator and isobutanol, 2-butanol, 1-butanol, hexane and toluene as a solvent. The reaction temperature, time and stirring speed were set at $70^{\circ}C$, 4 hrs and 150 rpm, respectively. The polymer was characterized for functional group by IR spectroscopy. It was observed that the intensity of band at $1637 cm^{-1}$ a characteristic band of C=C stretching disappeared indicating that it was completely consumed after polymerization. It was observed that swelling percentage increases with increase as time passes but after a certain time a constant swelling percentage is achieved. SEM pictures reveals that poly (HEMA) prepared by different solvent shows pore with a distinguishable void up to several micrometers. The BET surface area, cumulative pore volume and average pore diameter is greater in poly (HEMA) prepared by hexane as a solvent compared to other solvents. Poly (HEMA) prepared by 1-butanol as a solvent shows higher glass transition temperature compared to other solvents. Poly (HEMA) prepared by different solvents shows $90{\sim}94%$ light transmission property from light transmission measurement and looks transparent.

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

Characteristics of Fine WO3 Powders Prepared by Emulsion Evaporation (에멀전증발법으로 제조된 미세 산화텅스텐 분말의 특성)

  • 안종관;신창훈;이만승;이충효
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.89-95
    • /
    • 2002
  • Spherical fine powders of tungsten oxide powders were prepared by the emulsion evaporation method. The characteristics of the powders prepared were examined by means of TGA, X-ray diffraction, SEM and image analysis. The emulsions were prepared by fast mixing of aqueous phase containing tugsten and the organic phase which composed of kerosene, surfactant, and paraffin oil. Precursors were made by evaporating the emulsionin the kerosene bath at $160^{\circ}C$, and then calcined at $650^{\circ}C$ in order to produce tungsten oxide powders. The average particle size of the tungsten oxide powders was $0.5\mutextrm{m}$ and their shapes were spherical at the both case of w/o and o/w type emulsions. As the HLB value of the surfactant increased and the concentration of tungsten ions decreased the mean particle siqe of tungsten oxide powders decreased whereas agglomerationsize increased. The optimum concentration of Span 80 was 8 percent by volume, and the optimum stirring speed in the emulsion formation was 5000 rpm in order to obtain fine and well dispersed $WO_3$ powders.

Effect of Process Conditions on the Microstructure of Particle-Stabilized Al2O3 Foam

  • Ahmad, Rizwan;Ha, Jang-Hoon;Hahn, Yoo-Dong;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.278-284
    • /
    • 2012
  • $Al_2O_3$ foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, $Al_2O_3$ foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the $Al_2O_3$ particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the $Al_2O_3$ foam with open and closed-cell structure, cell size ranging from $20{\mu}m$ to $300{\mu}m$ having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at $1600^{\circ}C$ for 2 h in air.