• Title/Summary/Keyword: Stimulation time

Search Result 959, Processing Time 0.036 seconds

Bioconverted Jeju Hallabong tangor (Citrus kiyomi × ponkan) peel extracts by cytolase enhance antioxidant and anti-inflammatory capacity in RAW 264.7 cells

  • Chang, Yun-Hee;Seo, Jieun;Song, Eunju;Choi, Hyuk-Joon;Shim, Eugene;Lee, Okhee;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Citrus and its peels have been used in Asian folk medicine due to abundant flavonoids and usage of citrus peels, which are byproducts from juice and/or jam processing, may be a good strategy. Therefore, the aim of this study was to examine antioxidant and anti-inflammatory effects of bioconversion of Jeju Hallabong tangor (Citrus kiyomi ${\times}$ ponkan; CKP) peels with cytolase (CKP-C) in RAW 264.7 cells. MATERIALS/METHODS: Glycosides of CKP were converted into aglycosides with cytolase treatment. RAW 264.7 cells were pre-treated with 0, 100, or $200{\mu}g/ml$ of citrus peel extracts for 4 h, followed by stimulation with $1{\mu}g/ml$ lipopolysaccharide (LPS) for 8 h. Cell viability, DPPH radical scavenging activity, nitric oxide (NO), and prostagladin $E_2$ ($PGE_2$) production were examined. Real time-PCR and western immunoblotting assay were performed for detection of mRNA and/or protein expression of pro-inflammatory mediators and cytokines, respectively. RESULTS: HPLC analysis showed that treatment of CKP with cytolase resulted in decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycoside forms (naringenin and hesperetin). DPPH scavenging activities were observed in a dose-dependent manner for all of the citrus peel extracts and CKP-C was more potent than intact CKP. All of the citrus peel extracts decreased NO production by inducible nitric oxide synthase (iNOS) activity and $PGE_2$ production by COX-2. Higher dose of CKP and all CKP-C groups significantly decreased mRNA and protein expression of LPS-stimulated iNOS. Only $200{\mu}g/ml$ of CKP-C markedly decreased mRNA and protein expression of cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells. Both 100 and $200{\mu}g/ml$ of CKP-C notably inhibited mRNA levels of $interleukin-1{\beta}$ ($IL-1{\beta}$) and IL-6, whereas $200{\mu}g/ml$ CKP-C significantly inhibited mRNA levels of $TNF-{\alpha}$. CONCLUSIONS: This result suggests that bioconversion of citrus peels with cytolase may enrich aglycoside flavanones of citrus peels and provide more potent functional food materials for prevention of chronic diseases attributable to oxidation and inflammation by increasing radical scavenging activity and suppressing pro-inflammatory mediators and cytokines.

Development of an In Vitro Test System Measuring Transcriptional Downregulatory Activities on IL-13

  • Choi, Jeong-June;Park, Bo-Kyung;Park, Sun-Young;Yun, Chi-Young;Kim, Dong-Hee;Kim, Jin-Sook;Hwang, Eun-Sook;Jin, Mi-Rim
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.331-337
    • /
    • 2009
  • Interleukin-13 (IL-13) has been proposed as a therapeutic target for bronchial asthma as it plays crucial roles in the pathogenesis of the disease. We developed an in vitro test system measuring transcriptional downregulatory activities on IL-13 as a primary screening method to select drug candidates from natural products. The promoter region of IL-13 (-2,048 to +1) was cloned into the upstream of a luciferase gene in the plasmid pGL4.14 containing the hygromycin resistance gene as a selection marker, generating pGL4.14-IL-13. The EL-4 thymoma and RBL-2H3 mast cells transiently expressing this plasmid highly produced the luciferase activities by responding to PI (PMA and ionomycin) stimulation up to 8-fold and 13-fold compared with the control, respectively, whereas cyclosporin A, a well-known antiasthmatic agent, significantly downregulated the activities. The BF1 clone of RBL-2H3 cells constitutively expressing pGL4.14-IL-13 was established by selecting surviving cells under a constant lethal dose of hygromycin treatment. The feasibility of this system was evaluated by measuring the downregulatory activities of 354 natural products on the IL-13 promoter using the BF1 clone. An extract from Morus bombycis (named TBRC 156) significantly inhibited PI-induced luciferase activities and IL-13 mRNA expression, but not the protein expression. Fisetin (named TBRC 353) inhibited not only PI-induced luciferase activities and mRNA expression, but also the IL-13 protein secretion, whereas myricetin (named TBRC 354) could not suppress the IL-13 expression at all. Our data indicated that this in vitro test system is able to discriminate the effects on IL-13 expression, and furthermore, that it might be suitable as a simple and time-saving primary screening system to select antiasthmatic agents by measuring transcriptional activities of the IL-13 promoter.

Provinol Inhibits Catecholamine Secretion from the Rat Adrenal Medulla

  • Lee, Jung-Hee;Seo, Yu-Seung;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3 ${\sim}$ 3 ${\mu}g/ml$) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}M$) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}M$). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 ${\mu}g/ml$), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}M$) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 ${\mu}g/ml$) plus L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}M$), the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 ${\mu}g/ml$) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of $Ca^{2+}$ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.

Some Environmental factors Affecting Decay of Root Galls in Club Root Disease of Chinese Cabbage (배추무사마귀병 뿌리혹의 부패에 미치는 몇가지 환경요인)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Hong-Mo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.61-65
    • /
    • 2000
  • Effects of temperature, soil moisture level, flooding, and soil microflora on decay of root galls in club root disease of Chinese cabbage were examined in the laboratory. Number of days required for complete decay of root galls was 3 days at $32^{\circ}C$ or higher, 12 days at $16{\sim}20^{\circ}C$ and 28 days at $8^{\circ}C$. As soil moisture content goes up, root gall decay became faster resulting 3 days for complete decay under saturated moisture condition at high temperature of $32^{\circ}C$, and 8 days under the same moisture level at $24^{\circ}C$. Soil moisture effect was relatively low at $24^{\circ}C$ compared to $32^{\circ}C$. Stimulation of decay by soil flooding was not observed at $32^{\circ}C$ but became apparent at $12^{\circ}C$. Influence of soil microflora on root gall decay was negligiable. Based on these results, temperature appears to be the most important factor affecting root gall decay in soil. Root gall decay is thought to be affected more easily by other environmental factors under low temperature conditions. Maturity of resting spores of Plasmodioprora brassicae in root galls tended to increase as time prolongs during root gall decay. Density of the resting spores was lower in fresh root galls where their maturity was also low as compared to completely decayed root galls. Number of resting spores in completely decayed root gall was $6.5{\times}10^{6}/g$ tissue and its maturity was over 95%.

  • PDF

Transcriptome Analysis of Human HaCaT Keratinicytes by Ginsenosides Rb1 and Rg1 (진세노사이드 Rb1과 Rg1에 의한 HaCaT 피부각질세포의 전사체 분석)

  • Kim, Jung Min;Cho, Won June;Yoon, Hee Seung;Bang, In Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6774-6781
    • /
    • 2014
  • This study examined the efficacy and the mechanism of action of biological response modifiers, ginsenosides Rb1 and Rg1 isolated from Panax ginseng C.A. Meyer on human keratinocytes HaCaT cell lines. A non-significant cytotoxic response was obtained in the HaCaT cell lines on treatment with various concentrations of ginsenosides Rb1 and Rg1 for different time durations. Furthermore, the global changes in the mRNA profile of HaCaT cells were investigated using DNA microarrays after stimulation with the ginsenosides Rb1 and Rg1. Ginsenosides Rb1 and Rg1 strongly increased FGF2 in HaCaT cells, and were found to be a candidate gene for antioxidant activity and elasticity. Other key candidate genes for antioxidant activity, such as FANCD2, LEPR, and FAS, also show enhanced regulation in HaCaT cells treated with ginsenoside Rb1. This study will be useful for understanding the regulatory genes involved in skin elasticity and signal transduction pathway stimulated by the ginsenoside Rb1. This paper currently focuses on the key factors regulating the interaction of anti-aging principles and skin elasticity.

Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene

  • Ni, Dongjiao;Huang, Xiang;Wang, Zhibo;Deng, Lin;Zeng, Li;Zhang, Yiwei;Lu, Dongdong;Zou, Xinhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.398-407
    • /
    • 2020
  • Objective: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.

Nitroxergic Nerve Relaxes Rat Gastric Smooth Muscle by NO-cGMP Pathway

  • Yoon, Yoong-Sam;Choi, Hyoung-Chul;Jung, Young-Sook;Kim, Jong-Ho;Lee, Kwang-Youn;Sohn, Uy-Dong;Ha, Jeoung-Hee;Kim, Won-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • This study was undertaken to investigate an involvement of nitroxergic innervation in gastric smooth muscle of rat. Isometric tension study, the measurement of single cell length, NADPH diaphorase stain of smooth muscle layers and neuronal nitric oxide synthase (nNOS) western blotting were performed. Sodium nitroprusside (SNP), a nitric oxide donor, relaxed the muscle strips precontracted by acetylcholine (ACh) in a concentration-dependent manner. Pretreatment of L-arginine decreased the contraction induced by electric field stimulation (EFS). Pretreatment of $N^G-nitro-L-arginine$ methyl ester (L-NAME), a NOS inhibitor, increased the EFS-induced contractions. LY 83583, a guanylate cyclase (GC) inhibitor, reversed the inhibitory actions of L-arginine on the muscle contractions. The effects of L-Arginine, L-NAME and LY 83583 on ACh-induced contractions were not significant. L-arginine reduced the EFS-induced contraction in circular muscle, whereas L-NAME enhanced the EFS-induced contraction in longitudinal strips. By EFS, the phasic contractions appeared approximately $20{\sim}25$ seconds later. L-NAME significantly shortened the delay time to about $2{\sim}3$ seconds. In single cell study, ACh contracted gastric smooth muscle cells, SNP relaxed the cells, and the latter also inhibited the ACh-induced contraction. LY 83583 enhanced the ACh-induced contraction and antagonized SNP-induced relaxation. NADPH diaphorase activity was assessed by a histochemistry, nitroblue tetrazolium (NTB) staining. Positive staining was observed in both circular and longitudinal muscle layers. L-arginine increased the staining, while L-NAME decreased the staining. Western blotting for nNOS proved the presence of nNOS in rat gastric smooth muscle. EFS and additional $Ca^{2+}$ increased nNOS protein expression. These results suggest that in rat stomach, both circular and longitudinal muscle layers are innervated with nitroxergic nerves which relax the gastric smooth muscle via NO-cGMP pathway.

  • PDF

Influence of Fimasartan (a Novel $AT_1$ Receptor Blocker) on Catecholamine Release in the Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Hyo-Jeong;Lee, Seog-Ki;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2013
  • The aim of this study was to determine whether fimasartan, a newly developed $AT_1$ receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 ${\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), and veratridine (100 ${\mu}M$, an activator of $Na^+$ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 ${\mu}M$) and L-NAME (30 ${\mu}M$, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high $K^+$, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 ${\mu}M$) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 ${\mu}M$). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is relevant to $AT_1$ receptor blockade without NO release.

Cosmeceutical Properties of Extracts of Torreya nucifera and Alpinia henryi and Formulation Characteristics of Mask Pack Containing Extracts of These (비자 및 초두구 추출물의 코스메슈티칼 특성 및 이를 포함한 마스크팩 제형특성)

  • Soh, Soon-Young;Chun, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.36-43
    • /
    • 2020
  • The extracts of antioxidants, torreya nucifera and alphinia henryi, were tested for properties as a fragrance material and applied to a mask pack formulation to study the fragrance properties. The DPPH antioxidant test of hot water and ethanol extract confirmed that the ethanol extract had superior antioxidant efficacy compared to the hot water extract. It was confirmed that the optimal mixing ratio as a raw material for the mask pack of torreya nucifera and alphinia henryi was 3:7 as a result of the DPPH antioxidant test. As a result of the cytotoxicity test, the cell viability was good as it showed 103.30% at 0.5 ug/mL, 104.25% at 1 ug/mL, 102.56% at 5 ug/mL, and 99.17% at 10 ug/mL compared to the untreated group. As a result of the patch test on the mask pack formulation, the skin irritation index of 0.02 was judged as a non-irritation product in the skin irritation primary stimulation human application test. In the evaluation of skin moisturizing, it showed a significant increase rate of 19.178% compared to before the sample adaptation. Evaluation of the change over time in the sheet mask pack formulation confirmed the formulation stability without viscosity and pH change for 12 weeks at low temperature(4℃), room temperature(25℃), and high temperature(45℃).

Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells

  • Lim, Heejin;Yeo, Eunju;Song, Eunju;Chang, Yun-Hee;Han, Bok-Kyung;Choi, Hyuk-Joon;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.599-605
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Citrus flavonoids have a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated whether bioconversion of Citrus unshiu with cytolase (CU-C) ameliorates the anti-adipogenic effects by modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 cells. MATERIALS/METHODS: Glycoside forms of Citrus unshiu (CU) were converted into aglycoside forms with cytolase treatment. Cell viability of CU and CU-C was measured at various concentrations in 3T3L-1 cells. The anti-adipogenic and lipolytic effects were examined using Oil red O staining and free glycerol assay, respectively. We performed real time-polymerase chain reaction and western immunoblotting assay to detect mRNA and protein expression of adipogenic transcription factors, respectively. RESULTS: Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and instead, increased flavanone aglycoside forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with CU or CU-C at a dose of 0.5 mg/ml. Adipocyte differentiation was inhibited in CU-C group, but not in CU group. CU-C markedly suppressed the insulin-induced protein expression of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) as well as the mRNA levels of $CEBP{\alpha}$, $PPAR{\gamma}$, and sterol regulatory element binding protein 1c (SREBP1c). Both CU and CU-C groups significantly increased the adipolytic activity with the higher release of free glycerol than those of control group in differentiated 3T3-L1 adipocytes. CU-C is particularly superior in suppression of adipogenesis, whereas CU-C has similar effect to CU on stimulation of lipolysis. CONCLUSIONS: These results suggest that bioconversion of Citrus unshiu peel extracts with cytolase enhances aglycoside flavonoids and improves the anti-adipogenic metabolism via both inhibition of key adipogenic transcription factors and induction of adipolytic activity.