Browse > Article
http://dx.doi.org/10.4196/kjpp.2013.17.1.99

Influence of Fimasartan (a Novel $AT_1$ Receptor Blocker) on Catecholamine Release in the Adrenal Medulla of Spontaneously Hypertensive Rats  

Lim, Hyo-Jeong (Department of Internal Medicine, School of Medicine, Seoul National University)
Lee, Seog-Ki (Department of Chest Surgery, College of Medicine, Chosun University)
Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.17, no.1, 2013 , pp. 99-109 More about this Journal
Abstract
The aim of this study was to determine whether fimasartan, a newly developed $AT_1$ receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 ${\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), and veratridine (100 ${\mu}M$, an activator of $Na^+$ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 ${\mu}M$) and L-NAME (30 ${\mu}M$, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high $K^+$, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 ${\mu}M$) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 ${\mu}M$). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is relevant to $AT_1$ receptor blockade without NO release.
Keywords
Adrenal Medulla; $AT_1$ receptor blockade; Catecholamine secretion; Fimasartan;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268:239-247.   DOI   ScienceOn
2 Holz RW, Senter RA, Frye RA. Relationship between $Ca^{2+}$ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla. J Neurochem. 1982;39:635-646.   DOI
3 Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$ -pump, reduces $Ca^{2+}$ -dependent $K^{+}$ currents in guinea-pig smooth muscle cells. Br J Pharmacol. 1992;107:134-140.   DOI   ScienceOn
4 Challis RA, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem. 1991; 56:1083-1086.   DOI
5 Dendorfer A, Raasch W, Tempel K, Dominiak P. Interactions between the renin-angiotensin system (RAS) and the sympathetic system. Basic Res Cardiol. 1998;93 Suppl 2:24-29.   DOI   ScienceOn
6 Stoehr SJ, Smolen JE, Holz RW, Agranoff BW. Inositol trisphosphate mobilizes intracellular calcium in permeabilized adrenal chromaffin cells. J Neurochem. 1986;46:637-640.   DOI
7 Dunn LA, Holz RW. Catecholamine secretion from digitonintreated adrenal medullary chromaffin cells. J Biol Chem. 1983;258:4989-4993.
8 Marley PD, McLeod J, Anderson C, Thomson KA. Nerves containing nitric oxide synthase and their possible function in the control of catecholamine secretion in the bovine adrenal medulla. J Auton Nerv Syst. 1995;54:184-194.   DOI   ScienceOn
9 Oset-Gasque MJ, Parramon M, Hortelano S, Bosca L, Gonzalez MP. Nitric oxide implication in the control of neurosecretion by chromaffin cells. J Neurochem. 1994;63:1693-1700.
10 Palacios M, Knowles RG, Palmer RM, Moncada S. Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands. Biochem Biophys Res Commun. 1989;165: 802-809.   DOI   ScienceOn
11 Schwarz PM, Rodriguez-Pascual F, Koesling D, Torres M, Forstermann U. Functional coupling of nitric oxide synthase and soluble guanylyl cyclase in controlling catecholamine secretion from bovine chromaffin cells. Neuroscience. 1998;82: 255-265.
12 Torres M, Ceballos G, Rubio R. Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells. J Neurochem. 1994;63: 988-996.
13 Rodriguez-Pascual F, Miras-Portugal MT, Torres M. Effect of cyclic GMP-increasing agents nitric oxide and C-type natriuretic peptide on bovine chromaffin cell function: inhibitory role mediated by cyclic GMP-dependent protein kinase. Mol Pharmacol. 1996;49:1058-1070.
14 Siragy HM, de Gasparo M, Carey RM. Angiotensin type 2 receptor mediates valsartan-induced hypotension in conscious rats. Hypertension. 2000;35:1074-1077.   DOI   ScienceOn
15 Siragy HM, Carey RM. Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension. 1999;33:1237-1242.   DOI   ScienceOn
16 Gross V, Milia AF, Plehm R, Inagami T, Luft FC. Long-term blood pressure telemetry in AT2 receptor-disrupted mice. J Hypertens. 2000;18:955-961.   DOI   ScienceOn
17 Pueyo ME, Arnal JF, Rami J, Michel JB. Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am J Physiol. 1998;274:C214-C220.   DOI
18 McGehee DS, Role LW. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol. 1995;57:521-546.   DOI   ScienceOn
19 Boulanger CM, Caputo L, Levy BI. Endothelial AT1-mediated release of nitric oxide decreases angiotensin II contractions in rat carotid artery. Hypertension. 1995;26:752-757.   DOI   ScienceOn
20 Thorup C, Kornfeld M, Goligorsky MS, Moore LC. AT1 receptor inhibition blunts angiotensin II-stimulated nitric oxide release in renal arteries. J Am Soc Nephrol. 1999;10 Suppl 11:S220- S224.
21 Takekoshi K, Ishii K, Kawakami Y, Isobe K, Nakai T. Activation of angiotensin II subtype 2 receptor induces catecholamine release in an extracellular $Ca^{2+}$ -dependent manner through a decrease of cyclic guanosine 3',5'-monophosphate production in cultured porcine adrenal medullary chromaffin Cells. Endocrinology. 2001;142:3075-3086.   DOI
22 Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells. Distinct nicotinic and muscarinic patterns. FEBS Lett. 1989;247:429-434.   DOI   ScienceOn
23 Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13-25.   DOI   ScienceOn
24 Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N. Influx of $^{22}Na$ through acetylcholine receptor-associated Na channels: relationship between $^{22}Na$ influx, $^{45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience. 1985;15:283-292.   DOI   ScienceOn
25 Hano T, Mizukoshi M, Baba A, Nakamura N, Nishio I. Angiotensin II subtype 1 receptor modulates epinephrine release from isolated rat adrenal gland. Blood Press Suppl. 1994;5:105-108.
26 Viveros OH, Wilson SP. The adrenal chromaffin cell as a model to study the co-secretion of enkephalins and catecholamines. J Auton Nerv Syst. 1983;7:41-58.   DOI   ScienceOn
27 Bader MF, Holz RW, Kumakura K, Vitale N. Exocytosis: the chromaffin cell as a model system. Ann N Y Acad Sci. 2002;971: 178-183.   DOI   ScienceOn
28 Currie KP. Inhibition of $Ca^{2+}$ channels and adrenal catecholamine release by G protein coupled receptors. Cell Mol Neurobiol. 2010;30:1201-1208.   DOI
29 Borges R, Camacho M, Gillis KD. Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiol (Oxf). 2008;192:173-184.
30 Livett BG, Marley PD. Noncholinergic control of adrenal catecholamine secretion. J Anat. 1993;183:277-289.
31 Plunkett LM, Correa FM, Saavedra JM. Quantitative autoradiographic determination of angiotensin-converting enzyme binding in rat pituitary and adrenal glands with 125I-351A, a specific inhibitor. Regul Pept. 1985;12:263-272.   DOI   ScienceOn
32 Phillips MI, Speakman EA, Kimura B. Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regul Pept. 1993;43:1-20.   DOI   ScienceOn
33 Israel A, Stromberg C, Tsutsumi K, Garrido MR, Torres M, Saavedra JM. Angiotensin II receptor subtypes and phosphoinositide hydrolysis in rat adrenal medulla. Brain Res Bull. 1995;38:441-446.   DOI   ScienceOn
34 Wong PC, Hart SD, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD, Timmermans PB. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD123177 (AII-2). J Pharmacol Exp Ther. 1990;255:584-592.
35 Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34:724-728.   DOI
36 Armando I, Carranza A, Nishimura Y, Hoe KL, Barontini M, Terron JA, Falcon-Neri A, Ito T, Juorio AV, Saavedra JM. Peripheral administration of an angiotensin II AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation stress. Endocrinology. 2001;142:3880-3889.   DOI   ScienceOn
37 Yang G, Xi ZX, Wan Y, Wang H, Bi G. Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol Signals. 1993;2:166-172.   DOI
38 Mizuno M, Sada T, Ikeda M, Fukuda N, Miyamoto M, Yanagisawa H, Koike H. Pharmacology of CS-866, a novel nonpeptide angiotensin II receptor antagonist. Eur J Pharmacol. 1995;285:181-188.   DOI   ScienceOn
39 Cabassi A, Vinci S, Calzolari M, Bruschi G, Borghetti A. Regional sympathetic activity in pre-hypertensive phase of spontaneously hypertensive rats. Life Sci. 1998;62:1111-1118.   DOI   ScienceOn
40 Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res. 1981;48:309-319.   DOI   ScienceOn
41 Korner P, Bobik A, Oddie C, Friberg P. Sympathoadrenal system is critical for structural changes in genetic hypertension. Hypertension. 1993;22:243-252.   DOI   ScienceOn
42 Lee RM, Borkowski KR, Leenen FH, Tsoporis J, Coughlin M. Combined effect of neonatal sympathectomy and adrenal demedullation on blood pressure and vascular changes in spontaneously hypertensive rats. Circ Res. 1991;69:714-721.   DOI   ScienceOn
43 Borkowski KR, Quinn P. The effect of bilateral adrenal demedullation on vascular reactivity and blood pressure in spontaneously hypertensive rats. Br J Pharmacol. 1983;80: 429-437.   DOI   ScienceOn
44 Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther. 1962;138:360-375.
45 Borkowski KR, Quinn P. Adrenaline and the development of spontaneous hypertension in rats. J Auton Pharmacol. 1985;5: 89-100.   DOI
46 Borkowski KR. Effect of adrenal demedullation and adrenaline on hypertension development and vascular reactivity in young spontaneously hypertensive rats. J Auton Pharmacol. 1991;11: 1-14.   DOI
47 Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol. 1981;313:463-480.   DOI
48 Tallarida RJ, Murray RB. Manual of pharmacologic calculations with computer programs. 2nd ed. New York: Springer- Verlag; 1987. p. 132
49 Hammer R, Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci. 1982;31:2991-2998.   DOI   ScienceOn
50 Fulop T, Smith C. Matching native electrical stimulation by graded chemical stimulation in isolated mouse adrenal chromaffin cells. J Neurosci Methods. 2007;166:195-202.   DOI   ScienceOn
51 Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels. Nature. 1984;309:69-71.   DOI   ScienceOn
52 Lim DY, Kim CD, Ahn GW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res. 1992;15:115-125   DOI
53 Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol. 1989;38: 3995-4003.   DOI   ScienceOn
54 Shin KH, Kim TE, Kim SE, Lee MG, Song IS, Yoon SH, Cho JY, Jang IJ, Shin SG, Yu KS. The effect of the newly developed angiotensin receptor II antagonist fimasartan on the pharmacokinetics of atorvastatin in relation to OATP1B1 in healthy male volunteers. J Cardiovasc Pharmacol. 2011;58: 492-499.   DOI   ScienceOn
55 Seidler NW, Jona I, Vegh M, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$ -ATPase of sarcoplasmic reticulum. J Biol Chem. 1989;264:17816-17823.
56 Redon J, Fabia MJ. Efficacy in angiotensin receptor blockade: a comparative review of data with olmesartan. J Renin Angiotensin Aldosterone Syst. 2009;10:147-156.   DOI
57 Yi S, Kim TE, Yoon SH, Cho JY, Shin SG, Jang IJ, Yu KS. Pharmacokinetic interaction of fimasartan, a new angiotensin II receptor antagonist, with amlodipine in healthy volunteers. J Cardiovasc Pharmacol. 2011;57:682-689.   DOI   ScienceOn
58 Lee SE, Kim YJ, Lee HY, Yang HM, Park CG, Kim JJ, Kim SK, Rhee MY, Oh BH; Investigators. Efficacy and tolerability of fimasartan, a new angiotensin receptor blocker, compared with losartan (50/100 mg): a 12-week, phase III, multicenter, prospective, randomized, double-blind, parallel-group, dose escalation clinical trial with an optional 12-week extension phase in adult Korean patients with mild-to-moderate hypertension. Clin Ther. 2012;34:552-568.   DOI   ScienceOn
59 Oparil S, Silfani TN, Walker JF. Role of angiotensin receptor blockers as monotherapy in reaching blood pressure goals. Am J Hypertens. 2005;18:287-294.   DOI   ScienceOn
60 Smith DH. Strategies to meet lower blood pressure goals with a new standard in angiotensin II receptor blockade. Am J Hypertens. 2002;15:108S-114S.   DOI   ScienceOn
61 Teschemacher AG, Seward EP. Bidirectional modulation of exocytosis by angiotensin II involves multiple G-proteinregulated transduction pathways in chromaffin cells. J Neurosci. 2000;20:4776-4785.
62 Seltzer A, Bregonzio C, Armando I, Baiardi G, Saavedra JM. Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats. Brain Res. 2004;1028:9-18.   DOI   ScienceOn
63 Uresin Y, Erbas B, Ozek M, Ozkök E, Gürol AO. Losartan may prevent the elevation of plasma glucose, corticosterone and catecholamine levels induced by chronic stress. J Renin Angiotensin Aldosterone Syst. 2004;5:93-96.   DOI   ScienceOn
64 Noh HJ, Kang YS, Lim DY. Effects of losartan on catecholamine release in the isolated rat adrenal gland. Korean J Physiol Pharmacol. 2009;13:327-335.   DOI   ScienceOn
65 Lim HJ, Kim SY, Lim DY. Inhibitory effects of olmesartan on catecholamine secretion from the perfused rat adrenal medulla. Korean J Physiol Pharmacol. 2010;14:241-248.   DOI   ScienceOn
66 Critchley L, Ding B, Fok B, Wang D, Tomlinson B, James A, Thomas GN, Critchley J. The effects of candesartan and ramipril on adrenal catecholamine release in anaesthetized dogs. Eur J Pharmacol. 2004;489:67-75.   DOI   ScienceOn
67 Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14:177-183.   DOI
68 Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13:99S-105S.
69 Kim JH, Lee JH, Paik SH, Kim JH, Chi YH. Fimasartan, a novel angiotensin II receptor antagonist. Arch Pharm Res. 2012;35:1123-1126.   DOI   ScienceOn
70 Miura S, Karnik SS, Saku K. Review: angiotensin II type 1 receptor blockers: class effects versus molecular effects. J Renin Angiotensin Aldosterone Syst. 2011;12:1-7.   DOI
71 Bohler S, Pittrow D, Bramlage P, Kirch W. Drug interactions with angiotensin receptor blockers. Expert Opin Drug Saf. 2005;4:7-18.   DOI   ScienceOn