• Title/Summary/Keyword: Stiffness of damper

Search Result 323, Processing Time 0.036 seconds

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.

Comparative Studies between Prediction for a Building Structure with MR Damper using Linearization Technique and Experimental System Identification (선형화 기법에 기반한 MR 감쇠기가 설치된 건물의 동적모델 예측과 시스템식별 실험결과의 비교연구)

  • 이상현;민경원;이명규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.323-330
    • /
    • 2004
  • The purpose of this paper is to experimentally identify the finite element (FE) model of a building structure with magnetorheological (MR) fluid damper. Using FE model based system identification (FEBSI) technique, The model of MR damper having nonlinear characteristics is expressed with equivalent linear properties such as mass, stiffness, and damping. Bingham model is used for MR damper modeling. The equivalent stiffness and damping matrices of MR damper are predicted by applying an equivalent linearization technique, and those values are compared with the experimentally obtained ones.

  • PDF

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper (더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가)

  • Hur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Kim, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.10-17
    • /
    • 2015
  • In this study, to examine seismic reinforcement effect of a school building constructed prior to application of seismic design, a Double I-type damper supported by wall was installed to perform comparative analysis on existing non-seismic designed RC frame. As a result of experiment, while non-seismic designed specimen showed rapid reduction in strength and brittle shear destruction as damages were focused on top and bottom of left and right columns, reinforced specimen showed hysteretic characteristics of a large ellipse with great energy absorption ability, exhibiting perfectly behavior with increased strength and stiffness from damper reinforcement. In addition, as a result of comparing stiffness reduction between the two specimens, specimen reinforced by shear wall type damper was effective in preventing stiffness reduction. Energy dissipation ability of specimen reinforced by Double I-type damper was about 3.5 times as high as energy dissipation ability of non-reinforced specimen. Such enhancement in energy dissipation ability is considered to be the result of improved strength and deformation.

A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine (저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF

Development of Cable Damper System and Its Verification Test (사장교 케이블 댐퍼시스템 개발과 검증실험)

  • Seo, Ju-Won;Kim, Nam-Sik;Suh, Jeong-Gin;Jeong, Woon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.394-402
    • /
    • 2001
  • In order to lessen cable vibration, new cable damper system with high damping rubber was developed using the basis of the LRB design scheme. The analysis model of cable damper system incorporate voigt-kelvin damper model into the nonlinear cable analysis model. To achieve maximum damping capacity both reducing damper stiffness and developing high damping rubber were performed. As a result of verification test, the high damping rubber damper show its effectiveness in improving cable damping capacity.

  • PDF

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.

Vibration Control Effect of the Framed Building Structures according to the Stiffness Ratio of Exo-type Damping System and Damper Device Yield Ratio (Exo-type 감쇠시스템의 강성비와 감쇠장치의 항복비에 따른 라멘조 건물의 제진효과)

  • Hur, Moo-Won;Lee, Sang-Hyun;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, the vibration control effect of the Exo-type damping system was investigated by applying the Kagome dampers to 15-story and 20-story frame structure apartment. A new Exo-type damping system composed of the dampers and supporting column was proposed in the previous work and numerical analysis were performed to investigate the effects of optimum stiffness ratio between controlled structure and supporting column, the size of damper and yield ratio of the damper. The numerical analysis results of a structure with Exo-type damping system up to the third story showed that the stiffness ratio should be higher than 7.0 and the damper device yield ratio be at least 8.0% ($V_{damper}/V_{base\;shear$) to effectively reduce the base shear and the maximum drift of the uppermost story. When the Exo-type damping system was installed up to the fifth story, the stiffness ratio should be higher than 2.5 and damper device yield ratio needs to be at least 3.5% ($V_{damper}/V_{base\;shear$) for obtaining the target performance.

Mechanism Design of Optical Pickup Actuator for Fast Access of Optical Disk Drive (광디스크 드라이브의 고속 액세스를 위한 광픽업 액추에이터 메커니즘 설계)

  • 박준혁;이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.109-119
    • /
    • 2002
  • In this paper, mechanism design of optical pickup actuator for fast access is proposed. This actuator is composed of moving magnet type actuator and moving coil type actuator for tracking and fine motion, respectively. Moving magnet type tracking actuator is configurated by two permanent magnets and four air-core solenoids. Additional damper by induced current in tracking actuator can reduce the transient vibration between the coarse seeking servo and fine seeking servo. Variable stiffness can be acquired by applying current to air-core solenoid simply. This actuator can achieve fast access by these additional damper and stiffness. Performance of this actuator is predicted through the FEM, simulation and simple experiment. Settling time for transient vibration is reduced to 14.7% according to simulation result.

Vibration Control of the Framed Building Structures Using KGDS System with Isotropic Damping Devices (등방성 감쇠장치를 갖는 KGDS시스템을 활용한 라멘조 건물의 제진효과)

  • Hur, Moo-Won;Lee, Sang-Hyun;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.52-59
    • /
    • 2015
  • In this paper, the vibration control effect of the isotropic damping devices (so-called Kagome dampers) was investigated by applying the Kagome dampers to a 20-story frame structure apartment. A new Kagome Damper System (KGDS) composed of the dampers and supporting column was proposed and numerical analyses were performed to investigate the effects of stiffness ratio between controlled structure and supporting column, the damper size and the number of the dampers. The numerical analysis results of a structure with KGDS up to the third story showed that the stiffness ratio should be higher than 6.4 and the damper size be at least $700{\times}700mm$ to effectively reduce the base shear and the maximum drift of the uppermost story. When the KGDS was installed up to the fifth story, the stiffness ratio should be higher than 7.0 and damper size needs to be at least $500{\times}500mm$ for obtaining the target performance.

The Application of Resettable Device to Semi-Active Tuned Mass Damper Building Systems for Multi-level Seismic Hazard Mitigation

  • Chey, Min-Ho
    • Architectural research
    • /
    • v.14 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • An innovative multi-story Semi-Active Tuned Mass Damper (SATMD) building system is proposed to control seismic response of existing structures. The application of adding new stories as large tuned mass and semi-active (SA) resettable actuators as central features of the control scheme is derived. For the effective control of the structures, the optimal tuning parameters are considered for the large mass ratio, for which a previously proposed equation is used and the practical optimal stiffness is allocated to the actuator stiffness and rubber bearing stiffness. A two-degree-of freedom (2-DOF) model is adopted to verify the principal efficiency of the suggested structural control concept. The simulations for this study utilizes the three ground motions, from SAC project, having probability of exceedance of 50% in 50 years, 10% in 50 years, and 2% in 50 years for the Los Angeles region. 12-story moment resisting frames, which are modified as '12+2' and '12+4' story structures, are investigated to assess the viability and effectiveness of the system that aims to reduce the response of the buildings to earthquakes. The control ability of the SATMD scheme is compared to that of an uncontrolled and an ideal Passive Tuned Mass Damper (PTMD) building system. From the performance results of suggested '12+2' and '12+4' story retrofitting case studies, SATMD systems shows significant promise for application of structural control where extra stories might be added.