• Title/Summary/Keyword: Stiffness improvement

Search Result 422, Processing Time 0.026 seconds

Study on Frame Stiffness based on Lamination Pattern of Carbon Bicycle Frame Materials (카본 자전거 프레임 소재의 적층 패턴에 따른 프레임 강성 연구)

  • Choi, Ung-Jae;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.51-58
    • /
    • 2021
  • The notion of leisure has changed with industrial development and improvement in life quality. Bicycling is a healthy sport; it is an exercise performed while enjoying nature. There have been many changes in the materials that are used to manufacture the bicycle frame. Iron and aluminum have been mainly used in bicycle frames. However, carbon-based materials are lighter and stronger than metal frames. The bicycles made of carbon composite changes frame rigidity depending on the direction of the carbon sheet sacking angle. We study the direction of composite material and how they affect the stiffness of frames based on the stacking angle.

Effects of Negative Pressure Soft Tissue Therapy to Ankle Plantar Flexor on Muscle Tone, Muscle Stiffness, and Balance Ability in Patients with Stroke

  • Kim, Kyu Ryeong;Shin, Houng Soo;Lee, Sang Bin;Hwang, Hyun Sook;Shin, Hee Joon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.2
    • /
    • pp.1468-1474
    • /
    • 2018
  • The purpose of the study was to investigate the immediate effects of negative pressure soft tissue therapy on muscle tone, muscle stiffness and balance in patients with stroke. In total, 20 patients with stroke and assigned to the negative pressure soft tissue therapy group (NPST, n=10) or, placebo-negative pressure soft tissue therapy group(Placebo-NPST, n=10). Both groups underwent NPST or placebo-NPST once a day during the experimental period. MyotonPRO was used to assess the parameters for muscle tone and stiffness. Biorescue was used to assess the parameters for balance. Each group showed improvements in muscle tone, muscle stiffness, and balance ability (p<.05). Especially, Muscle tone, muscle stiffness, and anterior length in the limit of stability were the significant improvement on NPST group (p<.05). The results of the study suggest that the NPST is effective in improving muscle tone, muscle stiffness, and balance ability in patients with stroke.

A Study on the Improvement of the Floor Impact Sound Insulation Performance in Wall Slab Type Apartment (벽식구조 공동주택의 바닥충격음 개선에 대한 연구)

  • Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Floor impact sound has been most annoying for years among the noises which are produced in apartment. This study aims to analyze the improvement of floor impact sound by comparing the results of the test which was carried out for the wall slab type apartment and moment frame apartment, and also for the effect of advanced vibration isolation layer. Moment frame structure that main structure consists of column and slab has shown better performance for the heavyweight impact sound comparing with wall slab type structure which is general type in Korea. Stiffness of floor system was raised by reinforcing the stiffness of vibration isolation layer, and it was analyzed how much the floor impact sound performance was improved. The result showed that the reinforced floor had better performance than the existing floor system that uses lightweight porous concrete as vibration isolation material. In addition, a system used wire mesh in mortar showed improvement of floor impact sound than a system without wire mesh, and better performance for the frequency bands lower than 160 Hz which causes floor impact problem in wall slab type apartment.

Evaluation of monotonic and cyclic behaviour of geotextile encased stone columns

  • Ardakani, Alireza;Gholampoor, Naeem;Bayat, Mahdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Stone column installation is a convenient method for improvement of soft ground. In very soft clays, in order to increase the lateral confinement of the stone columns, encasing the columns with high stiffness and creep resistant geosynthetics has proved to be a successful solution. This paper presents the results of three dimensional finite element analyses for evaluating improvement in behaviour of ordinary stone columns (OSCs) installed in soft clay by geotextile encasement under monotonic and cyclic loading by a comprehensive parametric study. The parameters include length and stiffness of encasement, types of stone columns (floating and end bearing), frictional angle and elastic modulus of stone column's material and diameter of stone columns. The results indicate that increasing the stiffness of encasement clearly enhances cyclic behaviour of geotextile encased stone columns (GESCs) in terms of reduction in residual settlement. Performance of GESCs is less sensitive to internal friction angle and elasticity modulus of column's materials in comparison with OSCs. Also, encasing at the top portion of stone column up to triple the diameter of column is found to be adequate in improving its residual settlement and at all loading cycles, end bearing columns provide much higher resistance than floating columns.

Application of Soil-Cement Piles to the Ground Improvement of Harbor Structures (소일-시멘트 파일을 이용한 항만구조물의 말뚝식 지반개량 적용성)

  • Lee, Seong-Hun;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.29-47
    • /
    • 2013
  • This study undertook research on the sections of 90 harbor structures which applied a pile-type soil improvement using the soil-cement pile and then, determined the minimum replacement rate for each section, showing sufficient stability in all relevant studies including numerical analysis. The reliability of the numerical analysis was verified by a centrifuge model test. As a result of the study, it was revealed that when the foundation soil is too soft ($s_u$ = under 15 kPa), it is unsuitable to apply a pile-type ground improvement to a soil improvement regardless of types of super structures. And a pile-type soil improvement was found to be suitable for a harbor structure with the relative stiffness ratio (n) of less than 50~75 at a maximum and the 2~3 MPa strength of the soil-cement pile. Furthermore the governing factor for the minimum replacement rate for the pile-type soil improvement was turned out to be the allowable horizontal displacement. Therefore, the primary review to see the applicability of the pile-type soil improvement requires the evaluation of horizontal displacements.

A Study on the Analysis of Curving Performance of Railway Vehicle (열차의 곡선주행능 해석에 관한 연구)

  • Kim, Do-Jung;Park, Sam-Jin
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.101-110
    • /
    • 1985
  • Kyung-p-1 main line is characterized by its curves radii of which are considerably small. It is essential for running time reduction of train to improve capabilities of curve negotiation. This improvement can be achieved by designing a bogie with flexible suspension system. The effect of the improvement is mainly concerned in the primary yaw stiffness of bogie suspension. This paper gives a linear analysis for the motion of railway vehicle on curved track and gives also computer simulation results for Semaul Train. The results introduce a conclusion that the primary yaw stiffness of Semaul train is too rigid to be self-steering on Kyung-pu main line curves.

  • PDF

Improvement on Prediction of Circumferential-Groove-Pump Seal with CFD Analysis (CFD를 사용한 평행 홈 펌프 시일의 해석 개선)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.291-296
    • /
    • 2008
  • In order to improve the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and circumferentially grooved stator, CFD analysis using FLUENT has been performed to determine the groove penetration angle a which is the angle of separation line between control volumes II and III in groove section of Ha and Lee's three-control-volume theory. Validation to the present analysis using new penetration angle determined by the CFD analysis is achieved by comparisons with the results of published Ha and Lee's analysis. For the leakage prediction the present analysis shows slight improvement and CFD results yields the best. Direct damping and cross-coupled stiffness coefficients are predicted better to the experimental ones. However, direct stiffness coefficient is predicted worse.

A Study on Determination of Complex Stiffness of Frame Bush for Ride-Vibration Improvement of Body-on-Frame Vehicle (프레임 차량의 주행진동 저감을 위한 프레임 부시 복소 동강성 결정에 관한 연구)

  • Jeong, Myeon-Gyu;Kim, Ki-Sun;Kim, Kwang-Joon;Hwang, In-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.194-199
    • /
    • 2005
  • Body-on-frame type vehicle has a set of frame bushes which are installed between body and frame fur vibration Isolation. Such frame bushes are important vibration transmission paths to passenger space. In order to reduce the vibration level of passenger space, therefore, the change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this end, simple finite element vehicle model was constructed and the complex stiffness of frame bushes was set to be design variable. Objective function was defined to reflect passenger ride comfort and genetic algorithm and sub-structure synthesis were applied for minimization of the objective function.

  • PDF

Combination of Korean Medicine Therapy to Treat Posttraumatic Knee Stiffness: A Case Report (외상 후 슬관절 강직에 대한 복합 한의치료의 경과: 증례보고)

  • Lee, Geon-Yeong;Seol, Jae-Uk;Jo, Hee-Geun;Kwon, Min-Gu;Jeong, Sin-Yeong;Kim, Jong-Hwan;Park, Eo-Jin
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.2
    • /
    • pp.109-115
    • /
    • 2017
  • The purpose of this study is to illustrate the potential for clinical improvement in treating a patient with a case of Posttraumatic Knee Stiffness with a combination of Korean medicine therapy. We treated the patient with acupuncture, electroacupuncture, CHUNA manual therapy and Interferential Current Therapy from $5^{th}$ December 2016 to $13^{th}$ January 2017 (total 29 times) by evaluating knee function with VAS score. After six weeks of treatment, this patient achieved effective outcome following the technique, showing that clinical symptom as able to walked and pain was relieved, VAS changed from 10 to 2 and the knee flexion ROM (active/passive) changed from 30/60 degrees to 120/140 degrees. This result shows that Korean Medicine therapy may be an effective option for Posttraumatic Knee Stiffness. Further clinical studies are needed to clarify the effect of Korean Medicine therapy on Posttraumatic Knee Stiffness.

A Study on Determination of Complex Stiffness of Frame Bush for Ride-comfort Improvement of Body-on-frame Vehicle (프레임 차량의 주행 진동 저감을 위한 프레임 부시 복소동강성계수 크기 결정에 관한 연구)

  • Jeong, Myeon-Gyu;Kim, Ki-Sun;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.619-626
    • /
    • 2006
  • Body-on-frame type vehicle has a set of frame bushes between body and frame for vibration isolation. Such frame bushes are important vibration transmission paths to passenger space for excitations during driving. In order to reduce the vibration level of passenger space, therefore, change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this, a simple finite element vehicle model was constructed and complex stiffness of the frame bushes was set to be design variables. The objective function was defined to reflect frequency dependence of passenger ride comfort. Genetic algorithm and sub-structure synthesis were applied for minimization of the objective function. After optimization level at a position of interest on the car body was reduced by about 43.7 % in RMS value. Causes for optimization results are discussed.