• 제목/요약/키워드: Stiffness evaluation

검색결과 1,036건 처리시간 0.031초

감즙 염색에 의한 견직물의 역학적 특성 (Mechanical Properties of Silk Fabrics dyed with Persimmon Juice)

  • 배정숙
    • 한국의류산업학회지
    • /
    • 제15권1호
    • /
    • pp.156-162
    • /
    • 2013
  • For the development of high quality textiles, silk fabrics were dyed repeatedly with persimmon juice by padding mangle. We evaluated the mechanical properties and hand value by Kawabata Evaluation system for dyed silk fabrics. The results obtained from this study were as follows. With the increase of repeating padding times of dyeing, the linearity load-extension curves of the silk fabrics were increased; however, the tensile resilience of fabrics decreased. The hysteresis values of shear force were increased without significant change of shear stiffness. The coefficient of friction values were also decreased and geometrical roughness values were increased. The silk fabrics dyed with persimmon juice had shown the thickness and weight grow as the number of padding increases. The hand values of silk fabrics which were classified into 6 items in the Kawabata Evaluation System, were evaluated as repeating times of dyeing with persimmon juice. The hand values of Koshi(stiffness) and Hari(anti-drape stiffness) were increased, whereas Shinayakasa (flexibility with soft feeling) and Fukurami(fullness and softness) were decreased by dyeing with persimmon juice. However there was no significant change in hand values according to repeating padding times of dyeing.

변화하는 혈압의 영향을 받지 않는 동맥 벽의 강화도 측정 방법 제안 : 대동맥 확장지수 (A suggestion of Aortic wall Stiffness Evaluation Technique Independent on Changeable Blood Pressure : Aortic Distensibility Index)

  • 서지혜;최동호;오수경;;이종민
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.151-158
    • /
    • 2008
  • To evaluate aortic wall stiffness without influence of different background blood pressure, a new technique was developed and verified. At eight swine descending aortae, volume-pressure measurement was performed using custom-made system. Based on averaged pressure-volume curve, aortic distensibility index was formulated to evaluate aortic wall stiffness regardless of variable blood pressure and aortic size. The variability of aortic distensibility index by pressure change was compared with other parameters for wall stiffness evaluation. Subsequently, the aortic distensibility index was calculated at 100 contrast-enhanced EBCT data sets of normal volunteers in regular health screening program. The measured aortic distensibility index was compared with age, coronary calcium score, and aortic calcium score. Between 50 and 360 mmHg of blood pressure, the coefficient of variance of aortic distensibility index was 22.00% as comparing with 88.99% of classical compliance. Based on age, aortic distensibility index showed correlation coefficient of 0.55, whereas classical compliance showed 0.26. The correlation coefficient with modified aortic calcification was 0.43. Linear regression study revealed statistical significance of correlation coefficients. The aortic distensibility index, the method to evaluate aortic wall stiffness free from variable blood pressure and aortic size, was developed and verified with significant practical feasibility.

인공공압근육 엑츄에이터를 이용한 족관절 보조기의 족저굴곡 토크 평가 (Evaluation of Plantarflexion Torque of the Ankle-Foot Orthosis Using the Artificial Pneumatic Muscle)

  • 김경;권대규;강승록;박용군;정구영
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.82-89
    • /
    • 2010
  • Ankle-foot orthosis with an artificial pneumatic muscle which is intended for the assistance of plantarfelxion torque was developed. In this study, power pattern of the device in the various pneumatics and the effectiveness of the system were investigated. The pneumatic power was provided by ankle-foot orthosis controlled by user‘s physiological signal, that is, muscular stiffness in soleus muscle. This pneumatic power can assist plantarflexion torque of ankle joint. The subjects performed maximal voluntary isokinetic plantarflexion motion on a biodexdynamometer in different pneumatics, and they completed three conditions: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under muscular stiffness control. Through these experiments, we confirmed the effectiveness of the orthosis and muscular stiffness control using the analyzing isokinetic plantarflexion torque. The experimental results showed that isokinetic torques of plantarflexion motion of the ankle joints gradually increased in incremental pneumatic. The effectiveness of the orthosis was -7.26% and the effectiveness of the muscular stiffness control was 17.83% in normalized isokinetic plantarflexion torque. Subjects generated the less isokinetic torques of the ankle joints in wearing the orthosis with artificial muscles turned off, but isokinetic torques were appropriately reinforced in condition of wearing the orthosis activated under muscular stiffness control(17.83%) compared to wearing the orthosis(-7.26%). Therefore, we respect that developed powered orthosis is applied in the elderly that has weak muscular power as the rehabilitation equipment.

완충재 구성방법에 따른 동탄성계수 및 중량바닥충격음 저감특성 평가 (Evaluation of the Dynamic Stiffness and Heavy-weight Floor Impact Sound Reduction by Composition of Resilient Materials)

  • 김경우;정갑철;손장열
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.247-254
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS(styrofoam), recycled urethane types, EVA(ethylene vinylacetate) foam rubber, foam PE(polyethylene). glass fiber & rock wool, recycled tire, foam polypropylene. compressed polyester, and other synthetic materials. In this study, we tested dynamic stiffness of resilient material and floor impact sound reduction characteristic to a lot of kinds of resilient materials. It was found that dynamic stiffness of multi-layered damping material could be estimated if know value of each layer that compose whole structure. And the test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

동특성 변화를 이용한 감쇠 구조물의 손상예측 (Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

강성특성치를 이용한 고속전철 콘크리트궤도의 처짐가능성 평가 (Evaluation of Concrete-Track Deformation for High-Speed Railways by Characteristic Stiffness)

  • 조성호;이일화;황선근;강태호;김석철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.641-646
    • /
    • 2009
  • Concrete tracks are superior to ballast tracks in the aspect of durability, maintenance and safety. However, deteriorated stiffness of railroad bed and settlement of soft ground induced by trapped or seepage water lead to problems in safety of train operation. In this research, characteristic stiffness of concrete tracks, which is determined from FRACTAL (Flexural-Rigidity Assessment of Concrete Tracks by Antisymmetric Lamb Waves) technique, was employed as an index of track displacement. The characteristic stiffness is defined using Poisson's ratio, moment of inertia and stiffness ratio of subgrade to slab. To verify validity and reliability of the proposed characteristic stiffness, experimental and theoretical researches were performed. Feasibility of the characteristic stiffness based on FRACTAL technique was proved at a real concrete track for Korean high-speed trains. Validity of the FRACTAL technique was also verified by comparing the results of impulse-response tests performed at the same measurement array and the results of SASW tests and DC resistivity survey performed at a shoulder nearby the track.

  • PDF

구조용 막재료의 재료 비선형성 평가기법 (An Evaluation Method on the Material Nonlinearity of the Structural Membrane)

  • 한상을;이승훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.197-204
    • /
    • 2001
  • The purpose of this paper is to develope the evaluation technique to find proper elastic constants that characterize the material nonlinearity of structural membrane. The stress-strain curves of membrane material show strong nonlinearity. But generally the analysis is carried out under the assumption on material linear and geometrical nonlinear method. Because, it is very difficult to evaluate proper tangential stiffness. This paper use multi-step-linear approximation method taking the concept of effective stress for the evaluation of stiffness of membrane material, and then compare the results between linear and nonlinear analysis. Also. it shows better results than linear method

  • PDF

화재 피해를 입은 일반강도 및 고강도 RC 휨 부재의 잔존강도 평가 (Evaluation of Residual Strength of Fire-Damaged RC Beams with Normal and High Strength)

  • 최은규;강지연;신미경;신영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.51-54
    • /
    • 2005
  • Reinforced Concrete structures have been commonly regarded as fire-resisting constructions. In the case of high-strength concrete, however, the behavior of a concrete member under fire and after fire has characteristics in different way with normal strength concrete members because of spalling. The resonable evaluation about the residual strength and stiffness of members as well as material properties has to be conducted before reusing the fire-damaged structures or retrofitting or strengthening them. Therefore, the guideline is needed for evaluation the residual strength and stiffness. In this study, the fire test is conducted with parameters like concrete strength, fire time and cover thickness, etc. The loads-deflection curves are used for comparison and analysis with the parameters.

  • PDF

랜덤가진시험을 이용한 대형 크랭크샤프트 가공용 복합다기능 선반의 강성 평가 (Stiffness Evaluation of a Heavy-Duty Multi-Tasking Lathe for Large Size Crankshaft Using Random Excitation Test)

  • 최영휴;하경보;안호상
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.627-634
    • /
    • 2014
  • Machine tool vibration is well known for reducing machining accuracy. Because vibration response of a linear structure generally depends on its transfer function if the magnitude of excitation were kept constant, this study introduces a RET(Random Excitation Test) based on FRF method to evaluate stiffness of a prototype HDMTL(Heavy-Duty Multi-Tasking Lathe) for large crankshaft of marine engine. Firstly, two force loops of the lathe and corresponding structural loops were identified:1) workpiece - spindle - head stock - main bed, 2) workpiece - tool post - carriage bed. Secondly, compliances of each structural loop were measured respectively using RET with a hydraulic exciter and then converted into stiffness. Finally, the measured stiffness was compared with that obtained previously by FEM analysis. As the result, both measured and computed stiffness were closely in agreement with each other. And the prototype HDMTL has evidently sufficient rigidity above ordinary heavy-duty lathes.

불균일 강성을 갖는 폰툰형 구조물의 유탄성 응답 특성에 관한 실험 연구 (Experimental Study on the Hydroelastic Response of a Pontoon Type Structure with Nonuniform Mass and Stiffness)

  • 조석규;홍사영;김진하
    • 대한조선학회논문집
    • /
    • 제41권5호
    • /
    • pp.34-40
    • /
    • 2004
  • Very Large Floating Structure(VLFS) is regarded as one of promising candidates for the future utilization of ocean space. VLFS has the merits of small environmental effect. short construction term, easiness for extension and removal. It is well known that hydroelastic response is one of major design concerns of such a huge structure. Most of studies on the hydroelastic analysis of VLFS assumed uniform mass and bending stiffness. In case of a floating hotel where noticeable change of mass and stiffness at the hotel part is expected. it is necessary to investigate the effect of nonuniform mass and bending stiffness on the hydroelastic response. A model test of a pontoon type VLFS with nonuniform bending stiffness carried out for performance evaluation of a floating marina-hotel-convention center is described in this paper. Through investigation of model test results and comparison with numerical analysis using eigenfunction method, effect of the variation of bending stiffness is discussed.