• 제목/요약/키워드: Stiffness degradation

검색결과 385건 처리시간 0.029초

Damage and stiffness research on steel shape steel fiber reinforced concrete composite beams

  • Xu, Chao;Wu, Kai;Cao, Ping zhou;Lin, Shi qi;Xu, Teng fei
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.513-525
    • /
    • 2019
  • In this work, an experimental research has been performed on Steel Fiber-Steel Reinforced Concrete (SFSRC)specimens subjected to four-point bending tests to evaluate the feasibility of mutual replacement of steel fibers and conventional reinforcement through studying failure modes, load-deflection curves, stiffness of characteristic points, stiffness degradation curves and damage analysis. The variables considered in this experiment included steel fiber volume percentage with and without conventional reinforcements (stirrups or steel fibers) with shear span depth ratios of S/D=2.5 and 3.5. Experimental results revealed that increasing the volume percentage of steel fiber decreased the creation and propagation of shear and bond cracks, just like shortening the stirrups spacing. Higher crack resistance and suturing ability of steel fiber can improve the stability of its bearing capacity. Both steel fibers and stirrups improved the stiffness and damage resistance of specimens where stirrups played an essential role and therefore, the influence of steel fibers was greatly weakened. Increasing S/D ratio also weakened the effect of steel fibers. An equation was derived to calculate the bending stiffness of SFSRC specimens, which was used to determine mid span deflection; the accuracy of the proposed equation was proved by comparing predicted and experimental results.

Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure

  • Zhang, Yingying;Pei, Jianing;Huang, Yuan;Lei, Ke;Song, Jie;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.417-426
    • /
    • 2018
  • This paper presents the seismic behaviors and restoring force model of ring beam joints of steel tube-reinforced concrete column structure under cyclic loading. First, the main failure mode, ultimate bearing capacity, stiffness degradation and energy dissipation capacity are studied. Then, the effects of concrete grade, steel grade, reinforcement ratio and radius-to-width ratios are discussed. Finally, the restoring force model is proposed. Results show that the ring beam joints of steel tube-reinforced concrete column structure performs good seismic performances. With concrete grade increasing, the ultimate bearing capacity and energy dissipation capacity increase, while the stiffness degradation rates increases slightly. When the radius-width ratio is 2, with reinforcement ratio increasing, the ultimate bearing capacity decreases. However, when the radius-to-width ratios are 3, with reinforcement ratio increasing, the ultimate bearing capacity increases. With radius-to-width ratios increasing, the ultimate bearing capacity decreases slightly and the stiffness degradation rate increases, but the energy dissipation capacity increases slightly.

터널 숏크리트 라이닝의 장기 내구성 저하 평가를 위한 수치모델의 개발 (Development of a Numerical Model for Evaluation of Long-Term Mechanical Degradation of Shotcrete Lining in Tunnels)

  • 신휴성;임종진;김동규;이규필;배규진
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.251-258
    • /
    • 2005
  • In this study, a new concept for simulating a long-term mechanical degradation mechanism of shotcrete in tunnels has been proposed. In fact, it is known that the degradation takes place mainly by internal cracks and reduced stiffness, which results mainly from volume expansion of shotcrete and corrosion of cement materials, respectively. This degradation mechanism of shotcrete in tunnels appears similar to those of the most kinds of chemical reactions in tunnels. Therefore, the mechanical degradation induced by a kinds of chemical reaction was generalized and mathematically formulated in the framework of thermodynamics. The numerical model was implemented to a 3D finite element code, which can be used to simulate behaviour of shotcrete structures undergoing external forces as well as chemical degradation in time. A number of illustrative examples were given to show the feasibility of the model in tunnel designs with consideration of long-term degradation effect of shotcrete quantitatively for increase of long-term safety of tunnels.

  • PDF

층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구 (Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness)

  • 유석형
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.

Degradation of buckling capacity of slender concrete-filled double skin steel tubular columns due to interface compliance

  • Cas, Bojan;Schnabl, Simon
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.643-650
    • /
    • 2022
  • In this paper a novel mathematical model and its analytical solution of global buckling behaviour of slender elastic concrete-filled double-skin tubular (CFDST) columns with finite compliance between the steel tubes and a sandwiched concrete core is derived for the first time. The model is capable of investigating the influence of various basic parameters on critical buckling loads of CFDST columns. It is shown that the elastic buckling load of circular and slender CFDST columns is independent on longitudinal contact stiffness, but, on the other hand, it can be considerably dependent on circumferential contact stiffness. The increasing of the circumferential contact stiffness increases the critical buckling load. Furthermore, it is shown that analytical results can agree well with the experimental and numerical results if the calibrated values of circumferential contact stiffness are used in the calculations. Moreover, it is shown that the contact between the steel tubes and a sandwiched concrete core of tested large-scale CFDST columns used in the comparison is relatively weak. Finally, the proposed analytical results can be used as a benchmark solution.

Seismic performance assessment of steel reinforced concrete members accounting for double pivot stiffness degradation

  • Juang, Jia-Lin;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • 제8권6호
    • /
    • pp.441-455
    • /
    • 2008
  • This paper presents an effective hysteretic model for the prediction and evaluation of steel reinforced concrete member seismic performance. This model adopts the load-deformation relationship acquired from monotonic load tests and incorporates the double-pivot behavior of composite members subjected to cyclic loads. Deterioration in member stiffness was accounted in the analytical model. The composite member performance assessment control parameters were calibrated from the test results. Comparisons between the cyclic load test results and analytical model validated the proposed method's effectiveness.

Lateral stiffness of reinforced concrete flat plates with steps under seismic loads

  • Kim, Sanghee;Kang, Thomas H.K.;Kim, Jae-Yo;Park, Hong-Gun
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.891-906
    • /
    • 2014
  • The purpose of this study is to propose a modification factor to reflect the lateral stiffness modification when a step is located in flat plates. Reinforced concrete slabs with steps have different structural characteristics that are demonstrated by a series of structural experiment and nonlinear analyses. The corner at the step is weak and flexible, and the associated rotational stiffness degradation at the corner of the step is identified through analyses of 6 types of models using a nonlinear finite element program. Then a systematic analysis of stiffness changes is performed using a linear finite element procedure along with rotational springs. The lateral stiffness of reinforced concrete flat plates with steps is mainly affected by the step length, location, thickness and height. Therefore, a single modification factor for each of these variables is obtained, while other variables are constrained. When multiple variables are considered, each single modification factor is multiplied by the other. Such a method is verified by a comparative analysis. Finally, a complex modification factor can be applied to the existing effective slab width.

고인성 열가소성 복합재료 AS4/PEEK의 피로강도에 관한 기초적 검토 (A Preliminary Study on Fatigue Strength of High Toughness Thermoplastic Composite Material AS4/PEEK)

  • 송지호;강재윤
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.1055-1064
    • /
    • 2000
  • First, various specimen geometries, namely, coupon type, waisted type and dog-bone type, were examined to determine appropriate fatigue specimen of thermoplastic composite material AS4/PEEK and the n, fatigue strength of smooth and notched specimens of AS4/PEEK [-45/0/+45/90]2s was investigated. Fatigue tests were performed under load controlled condition at a stress ratio of 0. 1 at a frequency of 5Hz. Stiffness degradation of specimens with fatigue cycling was monitored using an automated unloading compliance technique. The waisted type specimen is found appropriate for smooth fatigue specimen geometry of AS4/PEEK. As for the effect of stress concentration, it is found that fatigue strength is higher for a 2mm-diameter hole notched specimen than a 5mm-diameter one. Fatigue notch factor decreases with the increase of fatigue life. These results are far different from the trend of fatigue strength of metallic materials. The stiffness variation of smooth specimen was only 4% at maximum until final fracture. On the other hand, the stiffness of hole notched specimen was reduced by 45% at maximum. Notched fatigue strength was compared between thermoplastic composite AS4/PEEK and thermosetting composite Graphite/Epoxy. In long-life fatigue (>104), the AS4/PEEK composite shows superior fatigue strength, but in short-life fatigue, the fatigue strength of the Graphite/Epoxy composite is nearly equal or somewhat higher than that of the AS4/PEEK composite.

CBD 시스템으로 보강된 비내진 RC 골조의 내진성능 평가 (Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by CBD System)

  • 허무원;이상현;천영수
    • 콘크리트학회논문집
    • /
    • 제27권6호
    • /
    • pp.625-632
    • /
    • 2015
  • 본 연구에서는 내진설계 이전에 지어진 학교 건물을 대상으로 내진보강효과를 알아보기 위하여 CBD 시스템을 설치하여 기존 비내진 설계된 보강 RC골조 실험결과와 비교 분석하였다. 실험결과, 비내진 설계된 실험체는 좌 우측 기둥의 상 하부에 피해가 집중되면서 급격한 강도저하와 함께 취성적인 전단파괴의 양상을 나타낸 반면, CBD 시스템을 보강한 실험체는 강도 및 강성의 증가와 함께 탄소성 거동을 보이면서 에너지 흡수 능력이 큰 타원형의 이력특성을 나타내었다. 또한, 두 실험체의 강성저하를 비교한 결과 CBD 시스템을 보강한 실험체가 강성저하를 방지하는데도 효과적임을 알 수 있었다. 에너지소산능력도 CBD 시스템을 보강한 실험체가 비보강 실험체에 비해 약 4.0배의 향상된 결과를 나타내었다. 이러한 에너지소산능력의 증진은 내력과 변형 능력의 증진에 따른 결과라고 사료된다. 본 연구에서 제안하는 CBD 시스템을 적용할 경우 비내진 상세를 갖는 철근콘크리트 골조의 내력 증진 및 안전성 확보를 위해 국내 내진기준에서 요구하는 허용층간변형각 기준을 만족하도록 보강하는데 용이하게 적용될 수 있을 것으로 판단된다.

더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가 (Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper)

  • 허무원;천영수;황재승;김종호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권6호
    • /
    • pp.10-17
    • /
    • 2015
  • 본 연구에서는 내진설계 이전에 지어진 학교 건물을 대상으로 내진보강효과를 알아보기 위하여 벽체로 지지되는 강재이력형 감쇠장치를 설치하여 기존 비내진 설계된 보강 RC골조 실험결과와 비교 분석하였다. 실험결과, 비내진 설계된 실험체는 좌 우측 기둥의 상 하부에 피해가 집중되면서 급격한 강도저하와 함께 취성적인 전단파괴의 양상을 나타낸 반면, 더블 I형 감쇠장치를 보강한 실험체는 감쇠장치 보강으로 강도 및 강성의 증가와 함께 탄소성 거동을 보이면서 에너지 흡수 능력이 큰 타원형의 이력특성을 나타내었다. 또한, 두 실험체의 강성저하를 비교한 결과 더블 I형 감쇠장치를 보강한 실험체가 강성저하를 방지하는데도 효과적임을 알 수 있었다. 에너지소산능력도 더블 I형 감쇠장치를 보강한 실험체가 비보강 실험체에 비해 약 3.5배의 향상된 결과를 나타내었다. 이러한 에너지소산능력의 증진은 내력과 변형 능력의 증진에 따른 결과라고 사료된다.