Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.5.643

Degradation of buckling capacity of slender concrete-filled double skin steel tubular columns due to interface compliance  

Cas, Bojan (Faculty of Civil and Geodetic Engineering, University of Ljubljana)
Schnabl, Simon (Faculty of Civil and Geodetic Engineering, University of Ljubljana)
Publication Information
Structural Engineering and Mechanics / v.82, no.5, 2022 , pp. 643-650 More about this Journal
Abstract
In this paper a novel mathematical model and its analytical solution of global buckling behaviour of slender elastic concrete-filled double-skin tubular (CFDST) columns with finite compliance between the steel tubes and a sandwiched concrete core is derived for the first time. The model is capable of investigating the influence of various basic parameters on critical buckling loads of CFDST columns. It is shown that the elastic buckling load of circular and slender CFDST columns is independent on longitudinal contact stiffness, but, on the other hand, it can be considerably dependent on circumferential contact stiffness. The increasing of the circumferential contact stiffness increases the critical buckling load. Furthermore, it is shown that analytical results can agree well with the experimental and numerical results if the calibrated values of circumferential contact stiffness are used in the calculations. Moreover, it is shown that the contact between the steel tubes and a sandwiched concrete core of tested large-scale CFDST columns used in the comparison is relatively weak. Finally, the proposed analytical results can be used as a benchmark solution.
Keywords
buckling; CFDST; column; contact; double-skin;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Wang, R., Han, L.H., Zhao, X.L. and Rasmussen, K.J.R. (2016), "Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact", Thin Wall. Struct., 101, 129-140. https://doi.org/10.1016/j.tws.2015.12.006.   DOI
2 Zhou, F. and Young, B. (2018), "Concrete-filled double-skin aluminum circular hollow section stub columns", Thin Wall. Struct., 133, 141-152. https://doi.org/10.1016/j.tws.2018.09.037.   DOI
3 Schnabl, S. and Planinc, I. (2010), "The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip", Eng. Struct., 32(10), 3103-3111. https://doi.org/10.1016/j.engstruct.2010.05.029.   DOI
4 Schnabl, S. and Planinc, I. (2013), "Exact buckling loads of two-layer composite Reissner's columns with interlayer slip and uplift", Int. J. Solid. Struct., 50, 30-37. https://doi.org/10.1016/j.ijsolstr.2012.08.027.   DOI
5 Imani, R., Mosqueda, G. and Bruneau, M. (2015), "Finite element simulation of concrete-filled double-skin tube columns subjected to postearthquake fires", J. Constr. Steel Res., 141(12), 04015055. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001301.   DOI
6 Li, W., Wang, D. and Han, L.H. (2017), "Behaviour of grout-filled double skin steel tubes under compression and bending: Experiments", Thin Wall. Struct., 166, 307-319. https://doi.org/10.1016/j.tws.2017.02.029.   DOI
7 Pagoulatou, M., Sheehan, T., Dai, X.H. and Lam, D. (2014), "Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns", Eng. Struct., 72, 102-112. https://doi.org/10.1016/j.engstruct.2014.04.039.   DOI
8 Ren, Q.X., Hou, C., Lam, D. and Han, L.H. (2014), "Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns", Steel Compos. Struct., 17(5), 667-686. https://doi.org/10.12989/scs.2014.17.5.667.   DOI
9 Schnabl, S., Jelenic, G. and Planinc, I. (2015), "Analytical buckling of slender circular concrete-filled steel tubular columns with compliant interfaces", J. Constr. Steel Res., 115, 252-262. https://doi.org/10.1016/j.jcsr.2015.08.035.   DOI
10 Skec, L., Schnabl, S., Planinc, I. and Jelenic, G. (2012), "Analytical modelling of multilayer beams with compliant interfaces", Struct. Eng. Mech., 44(4), 465-485. http://doi.org/10.12989/sem.2012.44.4.465.   DOI
11 Tao, Z., Han, L.H. and Zhao, X.L. (2004), "Behaviour of concrete-filled double-skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns", J. Constr. Steel Res., 60, 1129-1158. https://doi.org/10.1016/j.jcsr.2003.11.008.   DOI
12 Hassanein, M.F. and Kharoob, O.F. (2014a), "Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes", Thin Wall. Struct., 79, 23-37. https://doi.org/10.1016/j.tws.2014.01.008.   DOI
13 Hassanein, M.F., Kharoob, O.F. and Liang, Q.Q. (2013), "Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression", Thin Wall. Struct., 73, 252-263. https://doi.org/10.1016/j.tws.2013.08.017.   DOI
14 AISC (2010), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, USA.
15 Talaeitaba, S.B., Halabian, M. and Torki, M.E. (2015), "Nonlinear behavior of FRP-reinforced concrete-filled double-skin tubular columns using finite element analysis", Thin Wall. Struct., 95, 389-407. https://doi.org/10.1016/j.tws.2015.07.018.   DOI
16 EN 1994-1-1: Eurocode 4 (1992), Design of Composite Steel and Concrete Structures, European Committee for Standardization, Brussels.
17 Kryzanowski, A., Planinc, I. and Schnabl, S. (2014), "Slip-buckling analysis of longitudinaly delaminated composite columns", Eng. Struct., 76, 404-414. https://doi.org/10.1016/j.engstruct.2014.07.028.   DOI
18 Liang Q.Q. (2017), "Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression", Eng. Struct., 131, 639-650. https://doi.org/10.1016/j.engstruct.2016.10.019.   DOI
19 Schnabl, S. and Planinc, I. (2011a), "The effect of transverse shear deformation on the buckling of two-layer composite columns with interlayer slip", Int. J. Nonlin. Mech., 46(3), 543-553. https://doi.org/10.1016/j.ijnonlinmec.2011.01.001.   DOI
20 Kryzanowski, A., Schnabl, S., Turk, G. and Planinc, I. (2009), "Exact slip-buckling analysis of two-layer composite columns", Int. J. Solid. Struct., 46, 2929-2938. https://doi.org/10.1016/j.ijsolstr.2009.03.020.   DOI
21 Tan, K.H. and Zhang, Y.F. (2010), "Compressive stiffness and strength of concrete filled double skin (CHS inner and CHS outer) tubes", Int. J. Mech. Mater. Des., 6, 283-291. https://doi.org/10.1007/s10999-010-9138-y.   DOI
22 Elchalakani, M., Zhao, X.L. and Grzebieta, R. (2002), "Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression", Thin Wall. Struct., 40, 415-441. https://doi.org/10.1016/S0263-8231(02)00009-5.   DOI
23 Yang, Y.F., Han, L.H. and Sun, B.H. (2012), "Experimental behaviour of partially loaded concrete filled double-skin steel tube (CFDST) sections", J. Constr. Steel Res., 71, 63-73. https://doi.org/10.1016/j.jcsr.2011.11.005.   DOI
24 Liang Q.Q. (2018), "Numerical simulation of high strength circular double-skin concrete-filled steel tubular slender columns", Eng. Struct., 168, 205-217. https://doi.org/10.1016/j.engstruct.2018.04.062.   DOI
25 Perko, L. (2001), Differential Equations and Dynamical Systems, 3rd Edition, Springer-Verlag, NJ, USA.
26 Schnabl, S., Planinc, I., Saje, M., Cas, B. and Turk, G. (2006), "An analytical model of layered continuous beams with partial interaction", Struct. Eng. Mech., 22(3), 263-278. http://doi.org/10.12989/sem.2006.22.3.263.   DOI
27 Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007), "Analytical solution of two-layer beam taking into account interlayer slip and shear deformation", J. Struct. Eng., ASCE, 133(6), 886-894. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(886).   DOI
28 Hassanein, M.F., Kharoob, O.F. and Gardner, L. (2015), "Behaviour and design of square concrete-filled double skin tubular columns with inner circular tubes", Eng. Struct., 100, 410-424. https://doi.org/10.1016/j.engstruct.2015.06.022.   DOI
29 Chen, J., Ni, Y.Y. and Jin, W.L. (2015), "Column tests of dodecagonal section double skin concrete-filled steel tubes", Thin Wall. Struct., 88, 28-40. https://doi.org/10.1016/j.tws.2014.11.013.   DOI
30 Essopjee, Y. and Dundu, M. (2015), "Performance of concrete-filled double-skin circular tubes in compression", Compos. Struct., 133, 1276-1283. https://doi.org/10.1016/j.compstruct.2015.08.033.   DOI
31 Han, L.H., Tao, Z., Huang, H. and Zhao, X.L. (2004), "Concrete-filled double-skin (SHS outer and CHS inner) steel tubular beam-columns", Thin Wall. Struct., 42, 1329-1355. https://doi.org/10.1016/j.tws.2004.03.017.   DOI
32 Hassanein, M.F. and Kharoob, O.F. (2014b), "Compressive strength of circular concrete-filled double skin tubular short columns", Thin Wall. Struct., 77, 165-173. https://doi.org/10.1016/j.tws.2013.10.004.   DOI
33 Hu, H.T. and Su, F.C. (2011), "Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces", Marine Struct., 24, 319-337. https://doi.org/10.1016/j.marstruc.2011.05.001.   DOI
34 Huang, H., Han, L.H., Tao, Z. and Zhao, X.L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Constr. Steel Res., 66, 542-555. https://doi.org/10.1016/j.jcsr.2009.09.014.   DOI
35 Romero, M.L., Ibanez, C., Espinos, A., Portoles, J.M. and Hospitaler, A. (2017), "Influence of ultra-high strength concrete on circular concrete-filled dual steel columns", Struct., 9, 13-20. https://doi.org/10.1016/j.istruc.2016.07.001.   DOI
36 Wang, J., Liu, W., Zhou, D., Zhu, L. and Han, L.H. (2014), "Mechanical behavior of concrete filled double skin steel tubular stub columns confined by FRP under axial compression", Steel Compos. Struct., 17(4), 431-452. http://doi.org/10.12989/scs.2014.17.4.431.   DOI
37 Wang, R., Han, L.H., Zhao, X.L. and Rasmussen, K.J.R. (2016), "Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact", Thin Wall. Struct., 101, 129-140. https://doi.org/10.1016/j.tws.2015.12.006.   DOI
38 Wolfram Mathematica (2017), https://www.wolfram.com/mathematica
39 Reissner, E. (1972), "On one-dimensional finite-strain beam theory: The plane problem", J. Appl. Mech. Phys., 23, 795-804. https://doi.org/10.1007/BF01602645.   DOI
40 Romero, M.L., Espinos, A., Portoles, J.M., Hospitaler, A. and Ibanez, C. (2015), "Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire", Eng. Struct., 99, 536-545. https://doi.org/10.1016/j.engstruct.2015.05.026.   DOI
41 Schnabl, S. and Planinc, I. (2017), "Buckling of slender concrete-filled steel tubes with compliant interfaces", Lat. Am. J. Solid. Struct., 14(10), 1837-1852. https://doi.org/10.1590/1679-78253479.   DOI
42 Schnabl, S. and Planinc, I. (2019), "Circumferential gap and partial debonding effects on buckling loads and modes of slender CFST circular columns", Acta Mechanica, 230, 909-928. https://doi.org/10.1590/1679-78253479.   DOI
43 Schnabl, S. and Planinc, I. (2011b), "Inelastic buckling of two-layer composite columns with non-linear interface compliance", Int. J. Mech. Sci., 53(12), 1077-1083. https://doi.org/10.1016/j.ijmecsci.2011.09.002.   DOI